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Abstract

The formula for the computation of the gravity field of a polyhedral body with density linearly depending
on some coordinate is derived and transformed in the optimum form for numerical calculation.

Introduction

The optimum expression for the gravity field of a homogeneous polyhedral body was derived in Pohánka
(1988) (hereafter denoted as HPB). However, in many cases the (difference) density within the body varies
(in a more or less simple way) with the position. The most usual case is the linear dependence on the depth;
therefore, it is desirable to derive an exact formula for the gravity field of a polyhedral body with density
linearly depending on some coordinate.

Derivation of the Formula

We follow here the derivation of the formula for the gravity field presented in HPB. If D denotes the
interior of the polyhedral body and ρ(r) is the (difference) density within the body, then the gravity potential
of the body at the point r is

V (r) = −κ

∫

D
dτ ′ ρ(r′)

|r′ − r| , (1)

where κ is the gravitational constant and dτ ′ is the volume element at the point r′. The intensity of the
gravity field is

E(r)=−∇rV (r) = κ

∫

D
dτ ′ ∇r

ρ(r′)

|r′ − r| = −κ

∫

D
dτ ′ ρ(r′)∇r

′

1

|r′ − r| =

=−κ

∫

D
dτ ′ ∇r

′

ρ(r′)

|r′ − r| + κ

∫

D
dτ ′ 1

|r′ − r| ∇r
′ρ(r′). (2)

In our case the density can be expressed as

ρ(r) = ρ0 + ρ1 ·r (3)

(thus ρ0 is the value of density in a suitably chosen origin of coordinate system and ρ1 is the gradient of
density) and we have

E(r) = −κ

∫

D
dτ ′ ∇r

′

ρ0 + ρ1 ·r′
|r′ − r| + κ

∫

D
dτ ′ ρ1

|r′ − r| . (4)
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Similarly as in HPB, we express the integrals on the rhs of (4) as surface integrals (over the surface S of
the body) using the the Gauss theorem. If f(r′) is a vector function with integrable gradient in the domain
D, it holds

∫

D
dτ ′ ∇r

′ · f(r′) =

∫

S
dσ′ · f(s′), (5)

where dσ′ is the surface element at the point s′ on the surface S oriented outwards from domain D.
Accordingly, if f(r′) is a scalar function with integrable gradient in the domain D, it holds

∫

D
dτ ′ ∇r

′f(r′) =

∫

S
dσ′f(s′). (6)

In order to transform the second integral on the rhs of (4), we use the identity

∇r
′ · r′ − r

|r′ − r| =
2

|r′ − r| ;

thus formula (4) reads

E(r) = −κ

∫

D
dτ ′ ∇

r
′

ρ0 + ρ1 ·r′
|r′ − r| + κ

∫

D
dτ ′ ∇

r
′ · r′ − r

2 |r′ − r| ρ1 (7)

and according to (5) and (6) we obtain

E(r) = −κ

∫

S
dσ′ ρ0 + ρ1 ·s′

|s′ − r| + κ

∫

S
dσ′ · s′ − r

2 |s′ − r| ρ1. (8)

Now we write the integrals on the rhs of (8) as a sum of integrals over the sides Sk of the polyhedron
(1 ≤ k ≤ K). At any point of the k-th side we have dσ′ = nk dσ′, where nk is the unit normal vector
pointing outwards from this side and dσ ′ is the scalar surface element; thus

E(r)=−κ
K
∑

k=1

∫

Sk

dσ′ nk

ρ0 + ρ1 ·s′

|s′ − r| + κ
K
∑

k=1

∫

Sk

dσ′ nk · s′ − r

2 |s′ − r| ρ1 =

=−κ
K
∑

k=1

∫

Sk

dσ′
[

nk

(

ρ0 + ρ1 ·r
|s′ − r| +

ρ1 ·(s′ − r)

|s′ − r|

)

− nk · s′ − r

2 |s′ − r| ρ1

]

=

=−κ
K
∑

k=1

[

nk

(

(ρ0 + ρ1 ·r) Fk(r) + ρ1 · Gk(r)
)

− 1

2
nk · Gk(r) ρ1

]

, (9)

where

Fk(r) =

∫

Sk

dσ′ 1

|s′ − r| , (10)

Gk(r) =

∫

Sk

dσ′ s′ − r

|s′ − r| . (11)

Similarly as in HPB, we express surface integrals in functions Fk(r) and Gk(r) as line integrals along
the closed curve Lk, which is the boundary of the side Sk. This can be done using the 2D Gauss theorem
which we express in the following form: if f(r′) is a vector function with integrable gradient in the domain
Sk (i.e. for r′ = s′) and nk ·f(s′) = 0 (i.e. vector f(s′) lies in the plane of the side Sk), it holds

∫

Sk

dσ′ ∇s
′ · f(s′) =

∫

Lk

dξ′ · f(l′), (12)
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where dξ′ is the linear element at the point l′ of the curve Lk (vector dξ′ is orthogonal to the curve Lk and
vector nk, and it is oriented outwards from the domain Sk).

For correctness we note that we do not (explicitly) use an operator of the 2D gradient: operator ∇r
′

represents always the 3D gradient and expression ∇s
′ ·f(s′) is in fact a limit of ∇r

′ ·f(r′) for r′ → s′.
Nevertheless, this expression does not contain the derivative with respect to coordinate perpendicular to
the side Sk (thus it is in fact a 2D divergence), as nk ·f(s′) = 0 (here it is important that nk is a constant
vector).

In the case that f(r′) = g(r′)·v, where v is a constant vector, g(r′) is a tensor function with integrable
gradient in the domain Sk and nk·g(s′) = 0 (i.e. vector g(s′)·v lies in the plane of the side Sk), we get from
(12)

(

∫

Sk

dσ′ ∇s
′ · g(s′)

)

· v =

∫

Sk

dσ′ ∇s
′ · g(s′) · v =

∫

Lk

dξ′ · g(l′) · v =

(

∫

Lk

dξ′ · g(l′)

)

· v.

As this holds for any (constant) vector v, we obtain the formula
∫

Sk

dσ′ ∇s
′ · g(s′) =

∫

Lk

dξ′ · g(l′) (13)

(note that it is not necessary that tensor g(s′) is a 2D tensor, thus it need not be g(s′) ·nk = 0). For
explanation, if u, v are vectors and g is a tensor, u·g and g·u are vectors obtained by the scalar multiplication
of tensor g with vector u from the left and right, respectively, and u·g·v is a scalar obtained by the scalar
multiplication of tensor g with vector u from the left and vector v from the right (the order of multiplications
is not substantial).

For the function Fk(r) it was shown in this way in HPB that

Fk(r) =

∫

Lk

dξ′ · l′ − r

|l′ − r| + |nk · (l′ − r)| ; (14)

thus we need to transform only the surface integral in Gk(r). We are looking for a tensor function gk(r
′)

such that

∇
r

′ · gk(r
′) =

r′ − r

|r′ − r| , nk · gk(r
′) = 0. (15)

Note that it is necessary that these conditions hold only in the domain Sk; however, for simplicity we require
that they hold in the whole space (as this does not represent any loss of generality). We construct tensor
gk(r

′) from the unit tensor I and vectors r′ − r and nk using the scalar and tensor product of vectors. We
denote the tensor product of vectors u and v (in this order) simply as uv (this tensor is a dyad composed
from vectors u and v).

We first decompose vector r′ − r into two components, (r′ − r)‖ which is parallel to the side Sk and
(r′ − r)⊥ perpendicular to the side Sk,

(r′ − r)⊥ = Zk nk, Zk = nk · (r′ − r),

(r′ − r)‖ = r′ − r − (r′ − r)⊥, (16)

and denote

ρk = |(r′ − r)‖|, zk = |Zk|. (17)

Then the most general form of tensor gk(r
′) constructed as mentioned above and satisfying the second

condition of (15) is

gk(r
′) = (I − nknk) g0(ρk, Zk) + (r′ − r)‖

(

(r′ − r)‖ g1(ρk, Zk) + nk g2(ρk, Zk)
)

. (18)
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We have

∇r
′ (r′ − r)‖ = I − nknk, ∇r

′ · (r′ − r)‖ = 2,

∇
r

′ gi(ρk, Zk) =
(r′ − r)‖

ρk

∂

∂ρk

gi(ρk, Zk) + nk

∂

∂Zk

gi(ρk, Zk),

(r′ − r)‖ · ∇r
′ gi(ρk, Zk) = ρk

∂

∂ρk

gi(ρk, Zk),

and thus

∇r
′ · gk(r

′)=(I − nknk) · ∇r
′ g0(ρk, Zk) +

+
(

∇r
′ · (r′ − r)‖

) (

(r′ − r)‖ g1(ρk, Zk) + nk g2(ρk, Zk)
)

+

+(r′ − r)‖ ·
((

∇r
′ (r′ − r)‖

)

g1(ρk, Zk) +

+
(

∇r
′ g1(ρk, Zk)

)

(r′ − r)‖ +
(

∇r
′ g2(ρk, Zk)

)

nk

)

=

=
(r′ − r)‖

ρk

∂

∂ρk

g0(ρk, Zk) + 2
(

(r′ − r)‖ g1(ρk, Zk) + nk g2(ρk, Zk)
)

+

+
(

(r′ − r)‖ g1(ρk, Zk) + (r′ − r)‖ ρk

∂

∂ρk

g1(ρk, Zk) + nk ρk

∂

∂ρk

g2(ρk, Zk)
)

=

=(r′ − r)‖

(

1

ρk

∂

∂ρk

g0(ρk, Zk) + 3 g1(ρk, Zk) + ρk

∂

∂ρk

g1(ρk, Zk)

)

+

+nk

(

2 g2(ρk, Zk) + ρk

∂

∂ρk

g2(ρk, Zk)

)

.

Inserting in the first condition of (15) and using the equality

r′ − r

|r′ − r| =
(r′ − r)‖ + Zk nk

√

ρ2
k + z2

k

we obtain equations

1

ρk

∂

∂ρk

g0(ρk, Zk) + 3 g1(ρk, Zk) + ρk

∂

∂ρk

g1(ρk, Zk) =
1

√

ρ2
k + z2

k

,

2 g2(ρk, Zk) + ρk

∂

∂ρk

g2(ρk, Zk) =
Zk

√

ρ2
k + z2

k

.

Thus we have

∂

∂ρ
g0(ρ, Z) +

1

ρ

∂

∂ρ
ρ3 g1(ρ, Z) =

ρ
√

ρ2 + z2
, (19)

∂

∂ρ
ρ2 g2(ρ, Z) = Z

ρ
√

ρ2 + z2
, (20)

where z = |Z|. In order to use equality (13) we require that tensor gk(r
′) is bounded for r′ → r; this implies

that g0(ρ, Z), ρ2 g1(ρ, Z) and ρ g2(ρ, Z) have to be bounded for ρ → 0+. Then the single solution of (20) is

g2(ρ, Z) =
Z

ρ2

(

√

ρ2 + z2 − z
)

=
Z

√

ρ2 + z2 + z
(21)
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(note that it is always z ≥ 0); in the case of (19) we are free to choose one of the functions g0(ρ, Z), g1(ρ, Z).
In view of (13), (15) and (18) we get from (11)

Gk(r)=

∫

Sk

dσ′ ∇s
′ · gk(s

′) =

∫

Lk

dξ′ · gk(l
′) =

=

∫

Lk

dξ′ ·
[

(I − nknk) g0(ρk, Zk) + (l′ − r)‖
(

(l′ − r)‖ g1(ρk, Zk) + nk g2(ρk, Zk)
)]

. (22)

In our case Lk is a closed broken line composed from L(k) line segments Lk,l (1 ≤ l ≤ L(k)); we assume
that these segments are numbered in the direct sense (counter-clockwise) viewed from the outside of the
body. Vertices of the side Sk are numbered in the same order: end points of segment Lk,l are denoted as ak,l

and ak,l+1 (thus ak,L(k)+1 = ak,1). For every segment Lk,l we define two unit vectors: vector µk,l, which is
parallel with the segment and has the same orientation

µk,l =
ak,l+1 − ak,l

dk,l

, (23)

where dk,l is the length of the segment Lk,l

dk,l = |ak,l+1 − ak,l|, (24)

and vector νk,l lying in the plane of the side Sk, perpendicular to the segment Lk,l and directed outwards
from the side Sk, which reads

νk,l = µk,l × nk. (25)

Then we have on the segment Lk,l

l′ = ak,l + µk,l ξ
′ (0 ≤ ξ′ ≤ dk,l) (26)

and

dξ′ = νk,l dξ′. (27)

Further we denote

uk,l(r) = µk,l · (ak,l − r),

vk,l(r) = uk,l(r) + dk,l,

wk,l(r) = νk,l · (ak,l − r); (28)

and

Zk(r) = nk · (ak,1 − r), zk(r) = |Zk(r)|, (29)

As the quantity nk · (l′ − r) (= nk · (ak,l − r)) does not depend on ξ ′ nor on the index l, this quantity is
equal to Zk(r) (on any segment of Sk); thus we have according to (16) and (17) on the segment Lk,l

Zk = Zk(r), zk = zk(r),

(l′ − r)‖ = (uk,l(r) + ξ′)µk,l + wk,l(r)νk,l,

ρk = ρ(uk,l(r) + ξ′, wk,l(r)), ρ(ξ, w) =
√

ξ2 + w2. (30)
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Now we can write (22) in the form

Gk(r) =

L(k)
∑

l=1

∫

Lk,l

dξ′ ·
[

(I − nknk) g0(ρk, Zk) + (l′ − r)‖
(

(l′ − r)‖ g1(ρk, Zk) + nk g2(ρk, Zk)
)]

=

=

L(k)
∑

l=1

∫ dk,l

0
dξ′

[

νk,l g0(ρk, Zk) + νk,l · (l′ − r)‖
(

(l′ − r)‖ g1(ρk, Zk) + nk g2(ρk, Zk)
)]

=

=

L(k)
∑

l=1

∫ dk,l

0
dξ′

[

νk,l g0(ρ(uk,l(r) + ξ′, wk,l(r)), Zk(r)) +

+wk,l(r)
(

((uk,l(r) + ξ′)µk,l + wk,l(r)νk,l) g1(ρ(uk,l(r) + ξ′, wk,l(r)), Zk(r)) +

+nk g2(ρ(uk,l(r) + ξ′, wk,l(r)), Zk(r))
)]

=

=

L(k)
∑

l=1

∫ vk,l(r)

uk,l(r)
dξ
[

νk,l g0(ρ(ξ, wk,l(r)), Zk(r)) +

+wk,l(r)
(

(ξ µk,l + wk,l(r)νk,l) g1(ρ(ξ, wk,l(r)), Zk(r)) +

+nk g2(ρ(ξ, wk,l(r)), Zk(r))
)]

. (31)

If we denote

Φ1(u, v, w, Z) =

∫ v

u
dξ w ξ g1(ρ(ξ, w), Z),

Φ2(u, v, w, Z) =

∫ v

u
dξ
(

g0(ρ(ξ, w), Z) + w2 g1(ρ(ξ, w), Z)
)

,

Φ3(u, v, w, Z) =

∫ v

u
dξ w g2(ρ(ξ, w), Z), (32)

we obtain

Gk(r)=

L(k)
∑

l=1

[

Φ1

(

uk,l(r), vk,l(r), wk,l(r), Zk(r)
)

µk,l + Φ2

(

uk,l(r), vk,l(r), wk,l(r), Zk(r)
)

νk,l +

+Φ3

(

uk,l(r), vk,l(r), wk,l(r), Zk(r)
)

nk

]

. (33)

Using (21) we get

Φ3(u, v, w, Z) = Z Φ(u, v, w, Z) (34)

where

Φ(u, v, w, Z) =

∫ v

u
dξ

w
√

ξ2 + w2 + z2 + z
, (35)

(z = |Z| and thus Φ(u, v, w, Z) = Φ(u, v, w, z)). In HPB this function is denoted as φ(u, v, w, z) and it was
shown that (14) can be expressed as

Fk(r) =

L(k)
∑

l=1

Φ
(

uk,l(r), vk,l(r), wk,l(r), zk(r)
)

. (36)
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Explicit formula for the function Φ(u, v, w, z) reads

Φ(u, v, w, z) = w L(u, v, w, z) + 2 z A(u, v, w, z), (37)

where

L(u, v, w, z) = ln

√
v2 + w2 + z2 + v√
u2 + w2 + z2 + u

, (38)

A(u, v, w, z) = − arctan
2w (v − u)

T (u, v, w, z)2 − (v − u)2 + 2T (u, v, w, z) z
, (39)

T (u, v, w, z) =
√

u2 + w2 + z2 +
√

v2 + w2 + z2. (40)

Integral in the first formula of (32) can be removed if we put

g1(ρ, Z) =
1

ρ

∂

∂ρ
h(ρ, Z); (41)

then we obtain using the last formula of (30)

Φ1(u, v, w, Z) =

∫ v

u
dξ w

∂

∂ξ
h(ρ(ξ, w), Z) = w

(

h(ρ(v, w), Z) − h(ρ(u,w), Z)
)

. (42)

Inserting (41) in the condition (19) we get

∂

∂ρ
g0(ρ, Z) +

1

ρ

∂

∂ρ
ρ2 ∂

∂ρ
h(ρ, Z) =

ρ
√

ρ2 + z2
,

what can be written in the form

∂

∂ρ

(

g0(ρ, Z) +
∂

∂ρ
ρ h(ρ, Z)

)

=
∂

∂ρ

√

ρ2 + z2 (43)

(note that equations (41) – (43) are not changed if we replace h(ρ, Z) by h(ρ, Z) + c(Z), where c(Z) is a
function of Z). Thus we have

g0(ρ, Z) +
∂

∂ρ
ρ h(ρ, Z) =

√

ρ2 + z2, (44)

as the additional integration term of the form c(Z) on the rhs can be removed if we replace h(ρ, Z) by
h(ρ, Z) + c(Z). Then we have

g0(ρ, Z) + w2 g1(ρ, Z) =
√

ρ2 + z2 − h(ρ, Z) − ρ2 − w2

ρ

∂

∂ρ
h(ρ, Z),

using the last formula of (30) we get

g0(ρ(ξ, w), Z) + w2 g1(ρ(ξ, w), Z) =
√

ξ2 + w2 + z2 − ∂

∂ξ
ξ h(ρ(ξ, w), Z),

and from the second formula of (32) we obtain

Φ2(u, v, w, Z)=

∫ v

u
dξ

(

√

ξ2 + w2 + z2 − ∂

∂ξ
ξ h(ρ(ξ, w), Z)

)

=

=

∫ v

u
dξ
√

ξ2 + w2 + z2 −
(

v h(ρ(v, w), Z) − uh(ρ(u,w), Z)
)

. (45)
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We can easily calculate the indefinite integral

∫

dξ
√

ξ2 + w2 + z2 =
1

2

(

ξ
√

ξ2 + w2 + z2 + (w2 + z2) ln(
√

ξ2 + w2 + z2 + ξ)
)

,

thus the integral on the rhs of (45) is

∫ v

u
dξ
√

ξ2 + w2 + z2 =
1

2

(

v
√

v2 + w2 + z2 − u
√

u2 + w2 + z2 + (w2 + z2)L(u, v, w, z)
)

(46)

and we finally have

Φ2(u, v, w, Z)=
1

2

(

v
√

v2 + w2 + z2 − u
√

u2 + w2 + z2 + (w2 + z2)L(u, v, w, z)
)

−

−
(

v h(ρ(v, w), Z) − uh(ρ(u,w), Z)
)

. (47)

Thus we have expressed functions Φ1(u, v, w, Z) and Φ2(u, v, w, Z) (formulae (42) and (47)) in terms of
function h(ρ, Z), which has to satisfy only the condition that h(ρ, Z) and ρ ∂h(ρ, Z)/∂ρ have to be bounded
for ρ → 0+.

Now we are able to determine the form of function h(ρ, Z) in such a way that the expression (33) for
the function Gk(r) would be the simplest possible. We first put

h(ρ, Z) = 0 (48)

and from (42) and (47) we obtain

Φ1(u, v, w, Z) = 0,

Φ2(u, v, w, Z) =
1

2

(

v
√

v2 + w2 + z2 − u
√

u2 + w2 + z2 + (w2 + z2)L(u, v, w, z)
)

. (49)

Now we can try to find still simpler expression for these functions. It can be easily shown that the term
containing function L(u, v, w, z) cannot be removed from the expression of function Φ2(u, v, w, Z) by any
choice of function h(ρ, Z): if it would be for some function f(ρ, Z)

v f(ρ(v, w), Z) − u f(ρ(u,w), Z) =
1

2
(w2 + z2)L(u, v, w, z),

then inserting u = −v we would get

f(ρ(v, w), Z) =
w2 + z2

4 v
ln

√
v2 + w2 + z2 + v√
v2 + w2 + z2 − v

;

however, neither the argument of logarithm nor the term in front of it can be expressed as a function of
ρ(v, w) and Z. This means that function Φ2(u, v, w, Z) has to contain the logarithm term and that it is not
reasonable to consider any function h(ρ, Z) containing any logarithmic or other transcendental function. We
can still try to remove or simplify the first term on the rhs of (47): if we put

h(ρ, Z) =
1

2
ρ(ρ, z), (50)

we obtain

Φ1(u, v, w, Z) =
1

2
w
(

√

v2 + w2 + z2 −
√

u2 + w2 + z2
)

,

Φ2(u, v, w, Z) =
1

2
(w2 + z2)L(u, v, w, z). (51)
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It is clear that there are no simpler expressions for the functions Φ1(u, v, w, Z) and Φ2(u, v, w, Z) than (49)
or (51) (note also that in both cases Φ1(u, v, w, Z) = Φ1(u, v, w, z) and Φ2(u, v, w, Z) = Φ2(u, v, w, z)).

It has to be noted that the expression of function Gk(r) corresponding to formulae (33) and (49) was
obtained (in a slightly different way and in context of an other problem) by Ivan (1996) (author is indebted
to the anonymous reviewer for this information).

Now we can present the resulting formula for the intensity of the gravity field E(r): from (9), (33), (34)
and (36) we get

E(r)=−κ
K
∑

k=1

L(k)
∑

l=1

[(

(

ρ0 + ρ1 ·r + ρ1 · nk Zk(r)
)

Φ
(

uk,l(r), vk,l(r), wk,l(r), zk(r)
)

+

+ρ1 · µk,l Φ1

(

uk,l(r), vk,l(r), wk,l(r), zk(r)
)

+

+ρ1 · νk,l Φ2

(

uk,l(r), vk,l(r), wk,l(r), zk(r)
)

)

nk −

− 1

2
Zk(r) Φ

(

uk,l(r), vk,l(r), wk,l(r), zk(r)
)

ρ1

]

, (52)

where functions Φ(u, v, w, z), Φ1(u, v, w, z), Φ2(u, v, w, z) are given by (37) and (49) or (51).

Numerical Aspects

Now we modify the obtained formula for numerical calculation, closely following HPB and Pohánka
(1990): we aim to eliminate any undefined operations (e.g. expressions of the type 0/0) and to improve
the accuracy of calculation. For the function Φ(u, v, w, z) this is already done in the mentioned articles: we
express function L(u, v, w, z) in the form (note that we have always u ≤ v)

sign(u) = sign(v) : L(u, v, w, z) = sign(v) ln

√
v2 + w2 + z2 + |v|√
u2 + w2 + z2 + |u|

,

(53)

sign(u) 6= sign(v) : L(u, v, w, z) = ln
(
√

v2 + w2 + z2 + |v|)(
√

u2 + w2 + z2 + |u|)
w2 + z2

,

and replace function Φ(u, v, w, z) (given by (37)) in the formula (52) by the function Φ(u, v, w, z, ε) defined
as

Φ(u, v, w, z, ε) = w L(u, v, w, z + ε) + 2 z A(u, v, w, z + ε), (54)

where the positive parameter ε has a dimension of length and it is much smaller than the characteristic
dimension of the polyhedron.

In the case of functions Φ1(u, v, w, z) and Φ2(u, v, w, z) we first write function L(u, v, w, z) in the form
(53) and rewrite the other terms according to equalities

√

v2 + w2 + z2 −
√

u2 + w2 + z2 =
(v − u)(v + u)

T (u, v, w, z)
,

v
√

v2 + w2 + z2 − u
√

u2 + w2 + z2 =
1

2
(v − u)

(

(v + u)2

T (u, v, w, z)
+ T (u, v, w, z)

)

(55)

9



in order to decrease the error at points far away from the body. Then we replace functions Φ1(u, v, w, z),
Φ2(u, v, w, z) in the formula (52) by functions Φ1(u, v, w, z, ε), Φ2(u, v, w, z, ε), respectively, where

Φ1(u, v, w, z, ε) = 0,

Φ2(u, v, w, z, ε) =
1

4
(v − u)

(

(v + u)2

T (u, v, w, z + ε)
+ T (u, v, w, z + ε)

)

+

+
1

2
(w2 + z2)L(u, v, w, z + ε), (56)

in the first case (formula (49)) and

Φ1(u, v, w, z, ε) =
(v − u) (v + u)w

2T (u, v, w, z + ε)
,

Φ2(u, v, w, z, ε) =
1

2
(w2 + z2)L(u, v, w, z + ε), (57)

in the second case (formula (51)). Then the expressions (54), (56) and (57) are well defined for v ≥ u, z ≥ 0
and they are suitable for the numerical calculation.

Finally we compare the two variants (56) and (57) with respect to the speed of calculation. Expression
(57) is a little simpler than (56), as it contains two additions less than the other. However, by the calcu-
lation of expression (52) using (56) we need neither to calculate the quantity ρ1 · µk,l (thus perform three
multiplications and two additions), nor to multiply it by a nonzero quantity and add to the other terms.
Therefore the most simple variant for the numerical calculation is that given by formulae (52), (54) and
(56).

Algorithm of Calculation

Let us repeat briefly the optimum algorithm for the calculation of the gravity field of a polyhedral
body with linearly increasing density (we follow here closely the algorithm presented in HPB). The input
parameters of the body are:

– value of the density at the origin of coordinates ρ0 (note that this origin can lie outside the body),
– gradient of the density ρ1 (thus density at the point r within the body is given by ρ(r) = ρ0 + ρ1 ·r),
– number of polyhedron sides K,
– for every side (designated by the number k, 1 ≤ k ≤ K), the number of edges L(k) (equal to the

number of vertices),
– for every vertex of the k-th side (designated by the number l, 1 ≤ l ≤ L(k)), its radius-vector ak,l (the

vertices are ordered in the direct sense viewed from the exterior of the body and ak,L(k)+1 = ak,1). The l-th
edge is defined by its end points ak,l and ak,l+1.

The last input parameter is the radius-vector r of the point of calculation of the gravity field.
In the calculation we proceed as follows:

1. For each side (i.e. for each k) we find the following quantities:
(a) For each edge (i.e. for each l) its length

dk,l = |ak,l+1 − ak,l|,

and the unit vector

µk,l =
ak,l+1 − ak,l

dk,l

.
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(b) The unit normal vector nk pointing outwards from the side (see HPB)

nk =
Nk

|Nk|
,

where

Nk =

L(k)−1
∑

l=2

(ak,l − ak,1) × (ak,l+1 − ak,1).

(c) For each edge the unit vector

νk,l = µk,l × nk.

None of the quantities mentioned in this paragraph depend on r.
2. For the given point r we calculate the following quantities:
(a) For each k

Zk = nk · (ak,1 − r), zk = |Zk|.

(b) For each k and l

uk,l = µk,l · (ak,l − r),

vk,l = uk,l + dk,l,

wk,l = νk,l · (ak,l − r).

3. For some choice of the small positive parameter ε, the (aproximation of the) intensity of the gravity field
E(r, ε) is given by

E(r, ε)=−κ
K
∑

k=1

L(k)
∑

l=1

[(

(

ρ0 + ρ1 ·r + ρ1 · nk Zk

)

Φ(uk,l, vk,l, wk,l, zk, ε) +

+ρ1 · νk,l Φ2(uk,l, vk,l, wk,l, zk, ε)

)

nk −

− 1

2
Zk Φ(uk,l, vk,l, wk,l, zk, ε) ρ1

]

, (58)

where functions Φ(u, v, w, z, ε), Φ2(u, v, w, z, ε) can be calculated as follows. For the given numbers u, v
(v = u + d, d > 0), w, z (z ≥ 0), we make the following consecutive steps:

(a) zε = z + ε,

(b) W 2 = w2 + z2, W 2
ε = w2 + z2

ε ,

(c) Uε =
√

u2 + W 2
ε , Vε =

√

v2 + W 2
ε ,

(d) Tε = Uε + Vε,

(e) sign(u) = sign(v) : Lε = sign(v) ln
Vε + |v|
Uε + |u| ,
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sign(u) 6= sign(v) : Lε = ln
(Vε + |v|) (Uε + |u|)

W 2
ε

,

Aε = − arctan
2w d

(Tε + d) |Tε − d| + 2Tε zε

,

(f) Φ(u, v, w, z, ε) = w Lε + 2 z Aε,

Φ2(u, v, w, z, ε) =
1

4
d

(

(v + u)2

Tε

+ Tε

)

+
1

2
W 2 Lε.

Concluding Remarks

We have derived a formula for the computation of the gravity field of a polyhedral body with linearly
increasing density. This formula has the following properties: (1) it is maximally simple, (2) it is valid for
every point of space, and (3) it needs no special attention for the points near or on the surface of the body.
However, when compared with the formula for a polyhedral body with constant density, there has to be
paid an attention for the points very far from the body. This is because of the behaviour of the terms of
the sum on the rhs of formula (52): these terms behave for large distances from the body as polynomials of
coordinates of second order, compared with polynomials of the first order in the case of constant density.
Therefore it is necessary to use by the numerical calculation higher precision expression of real numbers.
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