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A solution of the inverse problem
of gravimetry for an ellipsoidal
planetary body

V. Pohánka
Geophysical Institute of the Slovak Academy of Sciences1

A bs t r a c t : The inverse problem of gravimetry for a planetary body of the shape of

a rotational ellipsoid is solved using the method described in Pohánka (1997).
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1. Introduction

In this paper we present the solution of the inverse problem of gravimetry
for a planetary body of the shape of a rotational ellipsoid; this solution was
obtained by applying the general method for a body of arbitrary shape
published in Pohánka (1997). The formulation of the inverse problem is
similar to that presented in the mentioned paper: gravity field is assumed
to be generated by the matter in the interior of a planetary body of the
shape of a rotational ellipsoid; at the surface of the body the value of the
normal derivative (with respect to the surface) of the gravity potential (and,
in the case of the extended problem, also the surface value of density of the
matter) is given (as input); the problem is to find every density function
(from some given class of functions) generating the given external gravity
field.

Let the equatorial and polar radius of the body be a and b, respectively,
where

b = a
√

1 − ε2 (1.1)
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and 0 ≤ ε < 1. We introduce the rectangular coordinate system with the
origin in the centre of the body and the base vectors i, j,k so that the unit
vector k is parallel to the rotational axis of the body. In the corresponding
spherical coordinate system with coordinates r, ϑ, ϕ we can write the radius
vector r of an arbitrary point in space as

r = r (i sinϑ cosϕ+ j sinϑ sinϕ+ k cosϑ). (1.2)

Further we introduce the ellipsoidal coordinates (coordinates of oblate sphe-
roid) υ, ξ, ψ by

r= a
√

(1 − ε2)υ2 + ε2(sin ξ)2,

ϑ= arccos

√
1 − ε2 υ cos ξ

√

(1 − ε2)υ2 + ε2(sin ξ)2
,

ϕ= ψ, (1.3)

where υ ≥ 0, 0 ≤ ξ ≤ π, 0 ≤ ψ < 2π (see Bateman and Erdélyi (1953),
16.1.3, and Pohánka (1995), Section 6). These coordinates are defined in
such a way that the surface of the body S is given by the condition υ = 1
and the interior (exterior) domain Dint (Dext) determined by the surface S
is given by the condition 0 ≤ υ < 1 (υ > 1).

From (1.2) and (1.3) we get for the radius vector r the expression

r = a
(

√

(1 − ε2)υ2 + ε2 sin ξ (i cosψ + j sinψ) +

+k
√

1 − ε2 υ cos ξ
)

(1.4)

and thus surface S is given in the parametrical form by

r = s(ξ, ψ), (1.5)

where

s(ξ, ψ) = a (i sin ξ cosψ + j sin ξ sinψ + k
√

1 − ε2 cos ξ). (1.6)

We accept the convention that the vector r satisfying (1.5) will be written
as s (thus s is the radius vector of an arbitrary point of surface S). We
further introduce the unit vector
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v = i sin ξ cosψ + j sin ξ sinψ + k cos ξ (1.7)

and we can write any function f(ξ, ψ) briefly as f(v).
The unit vector n(s) of the external normal to the surface S at the point

s is given by (see Pohánka (1995), Section 2)

n(s) = n(s(v)) =
o(v)

k(v)
, (1.8)

where

o(v) = i
√

1 − ε2 sin ξ cosψ + j
√

1 − ε2 sin ξ sinψ + k cos ξ (1.9)

and

k(v) = |o(v)| =
√

1 − ε2(sin ξ)2. (1.10)

Following the conventions adopted in Pohánka (1995) and Pohánka (1997),
we denote the inner (outer) limit of the function f(r) at the point s of
surface S as [f(s)]int ([f(s)]ext), and the normal component of the inner
(outer) limit of the gradient of this function at the point s as [νsf(s)]int =
n(s) · [∇sf(s)]int ([νsf(s)]ext = n(s) · [∇sf(s)]ext).

In order to express this normal component of gradient in ellipsoidal co-
ordinates, we first note that ∇rr is the identity tensor and we have

∇rr = ii + jj + kk = (∇rυ)∂υr + (∇rξ)∂ξr + (∇rψ)∂ψr. (1.11)

As it can be easily derived from (1.4), vectors ∂υr, ∂ξr, ∂ψr are mutually
orthogonal (this expresses the orthogonality of the ellipsoidal coordinate
system). Then it follows from (1.11) that

∂υr = (∇rυ) (∂υr)2, ∂ξr = (∇rξ) (∂ξr)2, ∂ψr = (∇rψ) (∂ψr)2, (1.12)

and this implies that vectors ∇rυ,∇rξ,∇rψ are also mutually orthogonal.
Vector n(s(v)) is proportional to the vector ∂ξs(v) × ∂ψs(v) (see Pohánka
(1995), (2.6)) and thus it is orthogonal to vectors [∇rξ]υ=1 and [∇rψ]υ=1;
therefore, it holds true that

n(s) · [∇sf(s)]int = n(s) · [∇rυ]υ=1 limυ→1− ∂υf(r). (1.13)

From (1.12), (1.4), (1.9), and (1.10) we easily get
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[∇rυ]υ=1 =
1

a
√

1 − ε2
o(v)

k(v)2
(1.14)

and using (1.8) we have

n(s) · [∇rυ]υ=1 =
1

a
√

1 − ε2 k(v)
. (1.15)

Then we obtain from (1.13) and (1.15)

[νsf(s)]int =
1

a
√

1 − ε2 k(v)
limυ→1− ∂υf(r); (1.16)

similarly

[νsf(s)]ext =
1

a
√

1 − ε2 k(v)
limυ→1+ ∂υf(r). (1.17)

2. Solution of the inverse problem

We follow here the method for finding the solution described in Pohánka
(1997): the potential of the gravity field V (r) and the density of the matter
ρ(r) satisfy, outside the body, the equations

r∈Dext : ρ(r) = 0, (2.1)

r∈Dext : ∆V (r) = 0, (2.2)

and the potential tends to zero at infinity; within the body they satisfy the
Poisson equation

r∈Dint : ∆V (r) = 4πκ ρ(r), (2.3)

where κ is the gravitational constant. The potential and its gradient are
continuous in the whole space; this implies that at the surface S we have
the following continuity conditions:

[V (s)]int = [V (s)]ext, (2.4)

[νsV (s)]int = [νsV (s)]ext. (2.5)
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The function on the r.h.s. of the last equation is the input of the inverse
problem; this function will be denoted as g(s), thus

[νsV (s)]ext = g(s). (2.6)

Now we express potential V (r) in the interior of the body in the form of

r∈Dint : V (r) = U0(r) +Q(r)U1(r) +Q(r)2W (r), (2.7)

where functionsQ(r), U0(r), U1(r) andW (r) have, in domainDint, bounded
derivatives of the second order, and function Q(r) satisfies the following
conditions:

r∈Dint : Q(r) > 0, (2.8)

[Q(s)]int = 0, (2.9)

− [νsQ(s)]int ≥ c > 0, (2.10)

where c is a suitable constant. Then it is clear that

n(s) = − 1

K(s)
[∇sQ(s)]int, (2.11)

where

K(s) = |[∇sQ(s)]int| (2.12)

and thus

[νsQ(s)]int = −K(s). (2.13)

Inserting expression (2.7) in conditions (2.4), (2.5), and using (2.9), (2.13)
we get

[U0(s)]int = [V (s)]ext, (2.14)

[νsU0(s)]int −K(s) [U1(s)]int = [νsV (s)]ext, (2.15)

and functions U0(r) and U1(r) can be chosen to be harmonic:

r∈Dint : ∆U0(r) = 0, (2.16)
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r∈Dint : ∆U1(r) = 0. (2.17)

Function W (r) can be chosen arbitrarily (it only has to have, in domain
Dint, bounded derivatives of the second order). According to (2.3) we then
obtain the following expression for the density

r∈Dint : ρ(r) =
1

4πκ
∆
(

Q(r)U1(r) +Q(r)2W (r)
)

(2.18)

and thus only the function U1(r) has to be calculated.

In the case when the surface value of the density (thus function [ρ(s)]int)
is also known, following Pohánka (1997) (Section 3), we rewrite function
W (r) in the form of

r∈Dint : W (r) = U2(r) +Q(r)Z(r), (2.19)

where functions U2(r) and Z(r) have, in domain Dint, bounded derivatives
of the second order, and function U2(r) can be chosen to be harmonic:

r∈Dint : ∆U2(r) = 0. (2.20)

Then we get from (2.7)

r∈Dint : V (r) = U0(r) +Q(r)U1(r) +Q(r)2 U2(r) +Q(r)3 Z(r) (2.21)

and instead of (2.18) we have the expression for the density

r∈Dint : ρ(r) =
1

4πκ
∆
(

Q(r)U1(r) +Q(r)2 U2(r) +Q(r)3 Z(r)
)

. (2.22)

Taking the limit to surface S, we obtain after some calculation using
(2.16), (2.17), (2.20), (2.9), and (2.11)

4πκ [ρ(s)]int = [∆Q(s)]int [U1(s)]int + 2 [∇sQ(s)]int · [∇sU1(s)]int +

+2 [∇sQ(s)]2int [U2(s)]int =

= L(s) [U1(s)]int − 2K(s) [νsU1(s)]int +

+2K(s)2 [U2(s)]int, (2.23)

where we denoted
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L(s) = [∆Q(s)]int. (2.24)

As the condition (2.23) does not contain function Z(r), this function can be
chosen arbitrarily (it has only to have, in domain Dint, bounded derivatives
of the second order); therefore, in this case, we have to calculate functions
U1(r) and U2(r).

These functions are determined by the conditions (2.15) and (2.23); in
view of (1.16) and (1.17) it is clear that the calculation of these functions
will be simpler if we put

K(s) =
K

a
√

1 − ε2 k(v)
, (2.25)

L(s) = LK(s)2, (2.26)

where K, L are suitable constants. Formulae (2.25), (2.26) represent ad-
ditional conditions imposed on function Q(r); now we can determine this
function.

It is clear that Q(r) can be chosen to depend on r2 and (k ·r)2 only.
Obviously, conditions (2.8) and (2.9) are satisfied if Q(r) is equal to E(r),
where

E(r) = 1 − r2

a2
− ε2

1 − ε2
(k·r)2

a2
, (2.27)

as in the ellipsoidal coordinates we have according to (1.4)

E(r) = (1 − υ2)
(

1 − ε2(sin ξ)2
)

(2.28)

and thus

E(s) = 0. (2.29)

However, condition (2.25) is not satisfied if Q(r) is equal to E(r); there-
fore, we express function Q(r) in the form of

Q(r) = Q(E(r), F (r)), (2.30)

where function F (r) is independent of E(r). We choose

F (r) = 1 − ε2 +
ε2

1 − ε2
(k·r)2

a2
, (2.31)
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as in the ellipsoidal coordinates we have

F (r) = 1 − ε2 + ε2υ2(cos ξ)2 (2.32)

and thus

F (s) = k(v)2. (2.33)

For maximal simplicity we require that Q(e, f) is a rational function of
variables e, f . We denote

Q1(e, f) = ∂eQ(e, f), Q2(e, f) = ∂fQ(e, f),

Q11(e, f) = ∂2
eQ(e, f), Q22(e, f) = ∂2

fQ(e, f),

Q12(e, f) = ∂e∂fQ(e, f), (2.34)

and we get

∇rQ(r) = Q1(E(r), F (r)) ∇rE(r) +Q2(E(r), F (r)) ∇rF (r), (2.35)

∆Q(r) = Q1(E(r), F (r)) ∆E(r) +Q2(E(r), F (r)) ∆F (r) +

+Q11(E(r), F (r)) (∇rE(r))2 +Q22(E(r), F (r)) (∇rF (r))2 +

+2Q12(E(r), F (r)) (∇rE(r)) · (∇rF (r)). (2.36)

We have

∇rE(r) = − 2

a2

(

r +
ε2

1 − ε2
(k·r)k

)

, (2.37)

∇rF (r) =
2

a2

ε2

1 − ε2
(k·r)k (2.38)

and

∆E(r) = − 2

a2

3 − 2ε2

1 − ε2
, (2.39)

∆F (r) =
2

a2

ε2

1 − ε2
; (2.40)

further we easily calculate
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(∇rE(r))2 =
4

a2

(

F (r)

1 − ε2
−E(r)

)

, (2.41)

(∇rF (r))2 =
4 ε2

a2

(

F (r)

1 − ε2
− 1

)

, (2.42)

(∇rE(r)) · (∇rF (r)) = − 4

a2

(

F (r)

1 − ε2
− 1

)

. (2.43)

In view of (2.29) and (2.33), condition (2.9) implies that Q(0, k(v)2) = 0;
as Q(e, f) is a rational function, we have

Q(0, f) = 0 (2.44)

and also

Q2(0, f) = 0, Q22(0, f) = 0. (2.45)

Then we get from (2.35)

[∇sQ(s)]int = Q1(0, k(v)2) [∇sE(s)]int (2.46)

and from (2.12) and (2.25) we obtain that K ≥ 0, and

K2

a2(1 − ε2) k(v)2
= ([∇sQ(s)]int)

2 = Q1(0, k(v)2)2 ([∇sE(s)]int)
2 =

=
4 k(v)2

a2(1 − ε2)
Q1(0, k(v)2)2. (2.47)

Using (1.6) and (1.9) we get from (2.37)

[∇sE(s)]int = − 2o(v)

a
√

1 − ε2
(2.48)

and according to (1.8) we have

[νsE(s)]int = − 2 k(v)

a
√

1 − ε2
. (2.49)

In view of condition (2.10) and formulae (2.46) and (2.49), we get that
Q1(0, k(v)2) > 0; therefore, from (2.47) we obtain that K > 0, and
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Q1(0, f) =
K

2f
, (2.50)

thus

Q12(0, f) = − K

2f2
. (2.51)

Similarly, from (2.36) we get

[∆Q(s)]int = Q1(0, k(v)2) [∆E(s)]int +Q11(0, k(v)2) [∇sE(s)]2int +

+2Q12(0, k(v)2) [∇sE(s)]int · [∇sF (s)]int (2.52)

and from (2.24) – (2.26) we obtain

L
K2

a2(1 − ε2) k(v)2
= [∆Q(s)]int =

= − (3 − 2ε2)K

a2(1 − ε2) k(v)2
+

4 k(v)2

a2(1 − ε2)
Q11(0, k(v)2) +

+
4K

a2 k(v)4

(

k(v)2

1 − ε2
− 1

)

. (2.53)

Then we have

Q11(0, f) =
K2L− (1 + 2ε2)K

4 f2
+

(1 − ε2)K

f3
(2.54)

Now we rewrite function Q(e, f) as

Q(e, f) = e
c0 + c1e+ c2f + c3e

2 + c4ef + c5f
2

d0 + d1e+ d2f + d3e2 + d4ef + d5f2
, (2.55)

thus condition (2.44) is satisfied, and inserting in (2.50) and (2.54) we get

c0 + c2f + c5f
2

d0 + d2f + d5f2
=
K

2f
, (2.56)

2(c1 + c4f)

d0 + d2f + d5f2
− 2(c0 + c2f + c5f

2)(d1 + d4f)

(d0 + d2f + d5f2)2
=

=
K2L− (1 + 2ε2)K

4 f2
+

(1 − ε2)K

f3
. (2.57)

From the first equation we get
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c0f + c2f
2 + c5f

3 =
K

2
(d0 + d2f + d5f

2) (2.58)

and thus

d0 = 0, c0 =
K

2
d2, c2 =

K

2
d5, c5 = 0. (2.59)

From the second equation we get

2(c1f
2 + c4f

3) −K (d1f + d4f
2) =

=

(

(1 − ε2)K +
1

4
(K2L− (1 + 2ε2)K) f

)

(d2 + d5f) (2.60)

and thus

d1 = − (1 − ε2) d5, d2 = 0,

c1 =
K

2
d4 +

1

8
(K2L− (1 + 2ε2)K) d5, c4 = 0. (2.61)

Further, from (2.56) it follows that d5 cannot be zero; therefore we can put

d5 = 1. (2.62)

Now we have

Q(e, f) = e
c1e+ c2f + c3e

2

− (1 − ε2) e+ d3e2 + d4ef + f2
; (2.63)

the remaining coefficients may be chosen according to the following criteria:
(a) function Q(r) should be as close to the function E(r) as possible;

particularly, for ε = 0 these functions should be equal;
(b) although function Q(r) is not used in domain Dext, it would be

advantageous to require that condition Q(r) = 0 is satisfied only at the
surface S;

(c) function Q(r) should be as simple as possible.
In view of the first criterion we require that the function Q(r)/E(r)

differs from 1 only in the second order with respect to variables r2 and
(k·r)2; in this way we obtain the following conditions:

c1 + (1 − ε2) c2 + c3 = − ε2(1 − ε2) + d3 + (1 − ε2) d4,

c1 + 2 c3 = − (1 − ε2) + 2 d3 + (1 − ε2) d4,

c1 − c2 + 2 c3 = − 3 (1 − ε2) + 2 d3 − ε2d4. (2.64)
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Further it is reasonable to require that

c3 = d3; (2.65)

then we get

c1 = − (1 − ε2)(2 − ε2), c2 = 1 − ε2, d4 = − (1 − ε2). (2.66)

Finally, we choose

d3 = 2 − ε2 (2.67)

(as condition (b) requires that c3 > (1 − ε2/2)2) and we have

Q(e, f) = e
(2 − ε2) e2 − (1 − ε2)(2 − ε2) e+ (1 − ε2) f

(2 − ε2) e2 − (1 − ε2)(f + 1) e+ f 2
. (2.68)

We denote

N(e, f) = (2 − ε2) e2 − (1 − ε2)(2 − ε2) e+ (1 − ε2) f, (2.69)

M(e, f) = (f − 1 + ε2)(f − (1 − ε2) e), (2.70)

so that

Q(e, f) = e
N(e, f)

N(e, f) +M(e, f)
. (2.71)

From definitions (2.27) and (2.31) we easily get

N(E(r), F (r)) = (2 − ε2)

(

ε2 − r2

a2
− ε2

1 − ε2
(k·r)2

a2

)

·

·
(

1 − r2

a2
− ε2

1 − ε2
(k·r)2

a2

)

+

+(1 − ε2)2 + ε2
(k·r)2

a2
≥

≥ (1 − ε2)2
(

1 − 2 − ε2

4

)

=
1

4
(2 + ε2)(1 − ε2)2, (2.72)

M(E(r), F (r)) = ε2
(k·r)2

a2

(

r2

a2
+
ε2(2 − ε2)

(1 − ε2)2
(k·r)2

a2

)

≥ 0 (2.73)
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and

r∈Dint : M(E(r), F (r)) ≤ ε2. (2.74)

This shows that function Q(r) given by (2.30) and (2.68) satisfies criteria
(a) and (b).

Finally, constants K and L can be obtained from (2.59), (2.61), (2.62),
and (2.66):

K = 2 (1 − ε2), L = − 3 − 2ε2

2 (1 − ε2)
(2.75)

(thus it holds true tat K > 0). We see that function Q(r) satisfies conditions
(2.8) and (2.9); according to (2.13), (2.25), and (2.75) condition (2.10) is
also satisfied.

At this point we depart from the course of solution described in Pohánka
(1997), as the Dirichlet and Neumann boundary problems for the Laplace
equation for the domain of the shape of rotational ellipsoid can be solved
exactly. This is the consequence of the fact that the Laplace equation can
be solved in the ellipsoidal coordinates by separation of variables and har-
monic functions can be expressed as a series of ellipsoidal harmonics (see
for example Heiskanen and Moritz (1967), Chapter 1, or Hobson (1931),
Paragraph 252).

We first introduce spherical functions Yn,m(v) (for definition see Pohánka
(1995), (3.9), (3.10)); they are nonzero only for n ≥ |m|, they are complex
(it holds true that Y∗

n,m(v) = Yn,−m(v), where asterisk denotes the complex
conjugation) and they form an orthonormal system: for n ≥ |m|, n′ ≥ |m′|
it holds true that

1

4π

∫

dΞ Y∗
n,m(v) Yn′,m′(v) = δn,n′ δm,m′ , (2.76)

where dΞ = sin ξ dξdψ.
Spherical functions form a complete system of functions on the (unit)

sphere: any function f(v) continuous on the sphere can be expressed as a
convergent series

f(v) =
∑

n≥0

∑

|m|≤n
fn,m Yn,m(v), (2.77)

where coefficients fn,m are given by
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fn,m =
1

4π

∫

dΞ f(v)Y∗
n,m(v); (2.78)

it is clear that for a real function f(v) it holds true that f ∗
n,m = fn,−m.

The adopted abbreviate notation of sums is the following:
∑

n≥k (
∑

n≤k)
is the summation over n (the first variable in the condition) from k to ∞
(from −∞ to k) and

∑

k≤n≤l is the summation over n (the middle variable
in the condition) from k to l if k ≤ l, and zero otherwise (

∑

|n|≤k is the
abbreviation of

∑

−k≤n≤k).

It can be shown (see Pohánka (1995), Section 3) that any function f(v)
given in the form of (2.26) satisfies the bound

|f(v)| ≤
∑

n≥0
‖fn,∗‖, (2.79)

where the norm is given by

‖fn,∗‖ =

√

(2n+ 1)
∑

|m|≤n
|fn,m|2. (2.80)

For any function f(v) such that the series on the r.h.s. of (2.28) converges
(such a function will be said to belong to the class S), the series on the r.h.s.
of (2.26) converges absolutely and uniformly.

Now we can express function V (r) in domain Dext as a series

V (r) =
∑

n≥0

∑

|m|≤n
Vn,m

Q
|m|
n (iκ(ε) υ)

Q
|m|
n (iκ(ε))

Yn,m(v) (2.81)

and functions Uk(r) (k = 0, 1, 2) in domain Dint as a series

Uk(r) =
∑

n≥0

∑

|m|≤n
Uk;n,m

P
|m|
n (iκ(ε) υ)

P
|m|
n (iκ(ε))

Yn,m(v), (2.82)

where

κ(ε) =

√
1 − ε2

ε
, (2.83)

and Pmn (z) and Qm
n (z) are the associated Legendre functions of the first

and second kind, respectively, (see Bateman and Erdélyi (1953), Chapter
3) defined for complex z. To proceed further we first derive certain useful
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formulae involving the associated Legendre functions of imaginary argu-
ment.

3. Some properties of Legendre functions of imaginary

argument

Functions P
|m|
n (z) and Q

|m|
n (z) (where |m| ≤ n and z is complex) are

defined as

P |m|
n (z) =

(n+|m|)!
n!

1

2π

∫ π

−π
dt (z +

√

z2 − 1 cos t)n cosmt (3.1)

(see Bateman and Erdélyi (1953), 3.7.14) and

Q|m|
n (z) = (−1)m

n!

(n−|m|)!

∫ ∞

0
dt

chmt

(z +
√
z2 − 1 ch t)n+1

(3.2)

(see Bateman and Erdélyi (1953), 3.7.12); they are regular in the whole z-
plane with exception of the cut from −1 to 1. We are interested only in the

functions P
|m|
n (iu), Q

|m|
n (iu) for |m| ≤ n, u real, u ≥ 0; in order to remove

complex quantities we express them in the form of

P |m|
n (iu) = in p|m|

n (u), (3.3)

Q|m|
n (iu) =

(−1)m

in+1
q|m|
n (u), (3.4)

where, as it follows from (3.1) and (3.2),

p|m|
n (u) =

(n+|m|)!
n!

1

2π

∫ π

−π
dt (u+

√

u2 + 1 cos t)n cosmt, (3.5)

q|m|
n (u) =

n!

(n−|m|)!

∫ ∞

0
dt

chmt

(u+
√
u2 + 1 ch t)n+1

. (3.6)

In the sequel we shall use functions p
|m|
n (u) and q

|m|
n (u) only in the case

when |m| ≤ n, u ≥ 0. Then it is clear from (3.6) that functions q
|m|
n (u) are
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always positive. In the case of functions p
|m|
n (u) we first write (3.5) in the

form of

p|m|
n (u) =

(n+|m|)!
n!

∑

0≤k≤n

(

n
k

)

uk
√

u2 + 1
n−k ·

· 1

2π

∫ π

−π
dt (cos t)n−k cosmt; (3.7)

for 0 ≤ k ≤ n we have

1

2π

∫ π

−π
dt (cos t)n−k cosmt =

1

2π

∫ π

−π
dt

1

2n−k
(eit + e−it)n−k ei|m|t =

=
1

2n−k
1

2π

∫ π

−π
dt
∑

0≤l≤n−k

(

n−k
l

)

e−i(n−k−|m|−2l)t =

=
1

2n−k

∑

0≤l≤n

(

n−k
l

)

δn−|m|−2l,k (3.8)

and thus

p|m|
n (u) =

(n+|m|)!
n!

∑

0≤k≤n

(

n
k

)

uk
√

u2 + 1
n−k ·

· 1

2n−k

∑

0≤l≤n

(

n−k
l

)

δn−|m|−2l,k =

=
(n+|m|)!

n!

∑

0≤l≤n

∑

0≤k≤n
δn−|m|−2l,k

(

n
|m|+2l

)( |m|+2l
l

)

·

· 1

2|m|+2l
un−|m|−2l

√

u2 + 1
|m|+2l

=

=
(n+|m|)!

n!

∑

0≤l≤[(n−|m|)/2]

(

n
|m|+2l

)( |m|+2l
l

)

·

· 1

2|m|+2l
un−|m|−2l

√

u2 + 1
|m|+2l

, (3.9)

where [x] is the integer part of x. This expression shows that functions

p
|m|
n (u) are positive with the exception of the case that u = 0 and n − |m|

is odd (when they are zero).

Now we are able to derive certain inequalities involving functions p
|m|
n (u)
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and q
|m|
n (u). We write (3.9) in the form of

p
|m|
n (u)√
u2 + 1

n =
(n+|m|)!

n!

∑

0≤l≤[(n−|m|)/2]

(

n
|m|+2l

)( |m|+2l
l

)

·

· 1

2|m|+2l

(

u√
u2 + 1

)n−|m|−2l

; (3.10)

as the quantity u/
√
u2 + 1 is an increasing function of u, the expression on

the r.h.s. is a nondecreasing function of u. Similarly, we write (3.6) in the
form of

q|m|
n (u)

√

u2 + 1
n+1

=
n!

(n−|m|)!

∫ ∞

0
dt

chmt

(u/
√
u2 + 1 + ch t)n+1

(3.11)

and we see that the expression on the r.h.s. is a nonincreasing function of
u. Therefore it holds true that (see also Hobson (1931), Paragraph 252)

0 ≤ u ≤ u′, 0 < u′ :
p
|m|
n (u)

p
|m|
n (u′)

≤
(√

u2 + 1√
u′2 + 1

)n

, (3.12)

0 ≤ u ≤ u′ :
q
|m|
n (u′)

q
|m|
n (u)

≤
(√

u2 + 1√
u′2 + 1

)n+1

. (3.13)

Further, from (3.9) we get

u ∂up
|m|
n (u) =

(n+|m|)!
n!

∑

0≤l≤[(n−|m|)/2]

(

n
|m|+2l

)( |m|+2l
l

)

·

· 1

2|m|+2l
u ∂uu

n−|m|−2l
√

u2 + 1
|m|+2l

=

=
(n+|m|)!

n!

∑

0≤l≤[(n−|m|)/2]

(

n
|m|+2l

)( |m|+2l
l

)

·

· 1

2|m|+2l
un−|m|−2l

√

u2 + 1
|m|+2l ·

·
(

n−|m|−2l + (|m|+2l)
u2

u2 + 1

)

; (3.14)

for 0 ≤ l ≤ [(n− |m|)/2] it holds true that
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n
u2

u2 + 1
≤ n−|m|−2l + (|m|+2l)

u2

u2 + 1
≤ n (3.15)

and comparing (3.14) with (3.9) we get the inequality

n
u2

u2 + 1
p|m|
n (u) ≤ u ∂up

|m|
n (u) ≤ np|m|

n (u). (3.16)

Similarly, from (3.6) we get

−u ∂uq
|m|
n (u) =

n!

(n−|m|)!

∫ ∞

0
dt (−u)∂u

chmt

(u+
√
u2 + 1 ch t)n+1

=

=
n!

(n−|m|)!

∫ ∞

0
dt

chmt

(u+
√
u2 + 1 ch t)n+2

·

· (n+1)

(

u+
u2

√
u2 + 1

ch t

)

; (3.17)

it holds true that

u2

u2 + 1
(u+

√

u2 + 1 ch t) ≤ u+
u2

√
u2 + 1

ch t ≤ u+
√

u2 + 1 ch t (3.18)

and comparing (3.17) with (3.6) we get the inequality

(n+1)
u2

u2 + 1
q|m|
n (u) ≤ −u ∂uq

|m|
n (u) ≤ (n+1) q|m|

n (u). (3.19)

After denoting

∂p|m|
n (u) = ∂up

|m|
n (u), (3.20)

∂q|m|
n (u) = ∂uq

|m|
n (u), (3.21)

and using the above established positivity of functions p
|m|
n (u) and q

|m|
n (u),

we obtain the inequalities

u > 0 : n
u2

u2 + 1
≤ u ∂p

|m|
n (u)

p
|m|
n (u)

≤ n, (3.22)

u ≥ 0 : (n+1)
u2

u2 + 1
≤ − u ∂q

|m|
n (u)

q
|m|
n (u)

≤ n+1. (3.23)
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Finally, from (3.5) and (3.6) we have (|m| ≤ n)

(n−|m|)!
(n+|m|)! p|m|

n (u) q|m|
n (u) =

1

2π

∫ π

−π
dτ (u+

√

u2 + 1 cos τ)n cosmτ ·

·
∫ ∞

0
dt

chmt

(u+
√
u2 + 1 ch t)n+1

=

=
1

2π

∫ π

−π
dτ (u+

√

u2 + 1 cos τ)ne−imτ ·

· 1

2

∫ ∞

−∞
dt

emt

(u+
√
u2 + 1 ch t)n+1

(3.24)

and thus

∑

|m|≤n

(n−|m|)!
(n+|m|)! p|m|

n (u) q|m|
n (u) =

=
1

2

∫ ∞

−∞
dt

1

2π

∫ π

−π
dτ

(u+
√
u2 + 1 cos τ)n

(u+
√
u2 + 1 ch t)n+1

∑

|m|≤n
e−imτ emt. (3.25)

It is clear that for any function f(τ) having the form of

f(τ) =
∑

|m|≤n
fm eimτ (3.26)

it holds true that

1

2π

∫ π

−π
dτ f(τ)

∑

|m|≤n
e−imτ emt =

∑

|m|≤n
fm emt = f(−it); (3.27)

as (u+
√
u2 + 1 cos τ)n is such a function, we have

1

2

∫ ∞

−∞
dt

1

2π

∫ π

−π
dτ

(u+
√
u2 + 1 cos τ)n

(u+
√
u2 + 1 ch t)n+1

∑

|m|≤n
e−imτ emt =

=
1

2

∫ ∞

−∞
dt

(u+
√
u2 + 1 ch t)n

(u+
√
u2 + 1 ch t)n+1

=

∫ ∞

0
dt

1

u+
√
u2 + 1 ch t

=

= q0
0(u) (3.28)

and thus we obtain the formula

∑

|m|≤n

(n−|m|)!
(n+|m|)! p|m|

n (u) q|m|
n (u) = q0

0(u). (3.29)
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Therefore, using the above established positivity of functions p
|m|
n (u) and

q
|m|
n (u), we get the inequality (|m| ≤ n)

0 ≤ (n−|m|)!
(n+|m|)! p|m|

n (u) q|m|
n (u) ≤ q0

0(u). (3.30)

4. Derivation of the solution

Inserting (3.4) in (2.81) we get for r∈Dext

V (r) =
∑

n≥0

∑

|m|≤n
Vn,m

q
|m|
n (κ(ε) υ)

q
|m|
n (κ(ε))

Yn,m(v) (4.1)

and inserting (3.3) in (2.82) we get for r∈Dint

Uk(r) =
∑

n≥0

∑

|m|≤n
Uk;n,m

p
|m|
n (κ(ε) υ)

p
|m|
n (κ(ε))

Yn,m(v). (4.2)

At the surface S we have (yet only formally)

[V (s)]ext =
∑

n≥0

∑

|m|≤n
Vn,m Yn,m(v), (4.3)

[Uk(s)]int =
∑

n≥0

∑

|m|≤n
Uk;n,mYn,m(v). (4.4)

If the coefficients Vn,m and Uk;n,m are such that the series
∑

n≥0 ‖Vn,∗‖ and
∑

n≥0 ‖Uk;n,∗‖ converge, then (see Section 2) the series on the r.h.s. of (4.3)
and (4.4) converge absolutely and uniformly. Inequalities (3.12) and (3.13)
yield

0 ≤ υ ≤ 1 :
p
|m|
n (κ(ε) υ)

p
|m|
n (κ(ε))

≤
√

(1 − ε2)υ2 + ε2
n

≤ 1, (4.5)

υ ≥ 1 :
q
|m|
n (κ(ε) υ)

q
|m|
n (κ(ε))

≤ 1
√

(1 − ε2)υ2 + ε2
n+1 ≤ 1, (4.6)
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and this implies that also the series on the r.h.s. of (4.1) and (4.2) converge
absolutely and uniformly (in this case also with respect to variable υ, where
υ ≥ 1 and 0 ≤ υ ≤ 1, respectively); as a consequence, equalities (4.3) and
(4.4) are true.

Further, if the coefficients Vn,m and Uk;n,m are such that also the series
∑

n≥0 ‖(n+1)Vn,∗‖ and
∑

n≥0 ‖nUk;n,∗‖ converge, then the series, obtained
by differentiation (term by term) of the series on the r.h.s. of (4.1) and
(4.2) with respect to υ, converge absolutely and uniformly (for υ ≥ 1 and
0 ≤ υ ≤ 1, respectively): this follows from the inequalities (3.22) and (3.23).
Therefore, according to (1.16) and (1.17) it holds true that

[νsV (s)]ext =

=
1

a
√

1 − ε2 k(v)

∑

n≥0

∑

|m|≤n
Vn,m

κ(ε) ∂q
|m|
n (κ(ε))

q
|m|
n (κ(ε))

Yn,m(v), (4.7)

[νsUk(s)]int =

=
1

a
√

1 − ε2 k(v)

∑

n≥0

∑

|m|≤n
Uk;n,m

κ(ε) ∂p
|m|
n (κ(ε))

p
|m|
n (κ(ε))

Yn,m(v). (4.8)

Now we can determine coefficients U0;n,m and U1;n,m using conditions
(2.14), (2.15), and formula (2.6). We first denote

G(s) = a
√

1 − ε2 k(v) g(s) (4.9)

and write function G(s) in the form of a series

G(s) =
∑

n≥0

∑

|m|≤n
Gn,m Yn,m(v); (4.10)

from (2.6) and (4.7) we then obtain (for |m| ≤ n)

Gn,m =
κ(ε) ∂q

|m|
n (κ(ε))

q
|m|
n (κ(ε))

Vn,m. (4.11)

Inequality (3.23) yields

(n+1) (1 − ε2) ≤ − κ(ε) ∂q
|m|
n (κ(ε))

q
|m|
n (κ(ε))

≤ n+1 (4.12)
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and thus we have

Vn,m =
q
|m|
n (κ(ε))

κ(ε) ∂q
|m|
n (κ(ε))

Gn,m. (4.13)

Similarly, from (2.14), and (4.3), (4.4) we get (for |m| ≤ n)

U0;n,m = Vn,m. (4.14)

Therefore, if the function G(s) belongs to the class S (thus the series
∑

n≥0 ‖Gn,∗‖ converges), the series
∑

n≥0 ‖(n+1)Vn,∗‖ and
∑

n≥0 ‖nU0;n,∗‖
also converge; this means that equalities (4.3), (4.7), (4.4), (4.8) (the latter
two for k = 0), and also (4.13) and (4.14) are true.

Formula (2.15) together with (2.6) yields

K(s) [U1(s)]int = [νsU0(s)]int − g(s); (4.15)

using (4.4), (4.8), (4.9), (4.10), and (2.25) we get (for |m| ≤ n)

K U1;n,m =
κ(ε) ∂p

|m|
n (κ(ε))

p
|m|
n (κ(ε))

U0;n,m −Gn,m (4.16)

and using (4.13), (4.14), and (2.75) we obtain

U1;n,m =
1

2 (1 − ε2)

(

q
|m|
n (κ(ε))

∂q
|m|
n (κ(ε))

∂p
|m|
n (κ(ε))

p
|m|
n (κ(ε))

− 1

)

Gn,m. (4.17)

From (3.22) we have

n (1 − ε2) ≤ κ(ε) ∂p
|m|
n (κ(ε))

p
|m|
n (κ(ε))

≤ n (4.18)

and using (4.12) we get the bound

n (1 − ε2)

n+1
≤ − q

|m|
n (κ(ε))

∂q
|m|
n (κ(ε))

∂p
|m|
n (κ(ε))

p
|m|
n (κ(ε))

≤ n

(n+1) (1 − ε2)
. (4.19)
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Thus, if the function G(s) belongs to the class S, the series
∑

n≥0 ‖U1;n,∗‖
also converges; this means that equalities (4.4) (for k = 1), (4.16), and
(4.17) are true. Moreover, if also the series

∑

n≥0 ‖nGn,∗‖ converges, the
same is true for the series

∑

n≥0 ‖nU1;n,∗‖; thus equality (4.8) holds true
also for k = 1.

In a similar way we can determine coefficients U2;n,m using condition
(2.23). We have

2K(s)2 [U2(s)]int = 4πκ [ρ(s)]int − L(s) [U1(s)]int +

+2K(s) [νsU1(s)]int; (4.20)

we denote

R(s) = 4πκ a2(1 − ε2) k(v)2 [ρ(s)]int (4.21)

and write function R(s) in the form of a series

R(s) =
∑

n≥0

∑

|m|≤n
Rn,m Yn,m(v). (4.22)

Then we get using (4.4), (4.8), (2.25), and (2.26) (for |m| ≤ n)

2K2 U2;n,m = Rn,m − LK2 U1;n,m + 2K
κ(ε) ∂p

|m|
n (κ(ε))

p
|m|
n (κ(ε))

U1;n,m (4.23)

and using (2.75) we obtain

U2;n,m =
1

8 (1 − ε2)2
Rn,m +

+
1

4 (1 − ε2)

(

2
κ(ε) ∂p

|m|
n (κ(ε))

p
|m|
n (κ(ε))

+ 3 − 2 ε2
)

U1;n,m. (4.24)

In view of (4.18), if the series
∑

n≥0 ‖nGn,∗‖ converges and function R(s)
belongs to the class S (thus the series

∑

n≥0 ‖Rn,∗‖ converges), the series
∑

n≥0 ‖U2;n,∗‖ also converges; this means that equalities (4.4) (for k = 2)
and (4.24) are true.

The solution of the inverse problem can be thus obtained as follows.
For the given function g(s), from (4.9) we get function G(s) and calculate
coefficients Gn,m by inversion of equality (4.10) (see (2.77) and (2.78)). Then
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we get coefficients U1;n,m from (4.17) and function U1(r) is given by (4.2)
(for k = 1). Density ρ(r) can be calculated from (2.18) for some choice of
the function W (r).

In the case that function [ρ(s)]int is also known, we first calculate coeffi-
cients U1;n,m and function U1(r) as before. Then we get function R(s) from
(4.21) and calculate coefficients Rn,m by inversion of (4.22). Coefficients
U2;n,m can be calculated from (4.24) and function U2(r) is given by (4.2)
(for k = 2). Density ρ(r) can be calculated from (2.22) for some choice of
the function Z(r).

Finally, we note that the presented method for the solution of the inverse
problem of gravimetry for an ellipsoidal planetary body is a generalization
of the method treated in Pohánka (1993) for the body of spherical shape.

5. Improvement of the solution

In previous Sections the solution of the inverse problem of gravimetry
was presented in the form that need not be the most suitable for numerical
calculation. Therefore, we shall present certain modifications of this solution
that can improve the speed of numerical calculation.

First, we derive a simpler expression of the fraction on the r.h.s. of (4.17).
We use the formula (see Hobson (1931), Par. 251)

1

|r − r′| =
i

a ε

∑

n≥0

∑

|m|≤n
(−1)m

(n−|m|)!
(n+|m|)! ·

·P |m|
n (iκ(ε) υ) Q|m|

n (iκ(ε) υ′) Yn,m(v)Y∗
n,m(v′), (5.1)

where 0 ≤ υ < υ′ (note that in Hobson (1931) the i is missing in nominator
on the r.h.s.). This formula can be written in our denotation (see Section
3) as

1

|r − r′| =
1

a ε

∑

n≥0

∑

|m|≤n

(n−|m|)!
(n+|m|)! ·

·p|m|
n (κ(ε) υ) q|m|

n (κ(ε) υ′) Yn,m(v)Y∗
n,m(v′). (5.2)
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For any function f(v) that belongs to the class S we have (for r∈Dint,
thus 0 ≤ υ < 1)

1

4π

∫

dΞ′ f(v′)

|r − s(v′)| =
1

a ε

∑

n≥0

∑

|m|≤n

(n−|m|)!
(n+|m|)! ·

·p|m|
n (κ(ε) υ) q|m|

n (κ(ε)) fn,mYn,m(v), (5.3)

where the series on the r.h.s. converges according to (3.12) and (3.30)
absolutely and uniformly (also with respect to υ for 0 ≤ υ ≤ 1). As the
integral kernel 1/|s(v) − s(v′)| is weakly singular, we have

1

4π

∫

dΞ′ f(v′)

|s(v) − s(v′)| =
1

4π

∫

dΞ′ limυ→1−
f(v′)

|r − s(v′)| =

= limυ→1−
1

4π

∫

dΞ′ f(v′)

|r − s(v′)| =

= limυ→1−
1

a ε

∑

n≥0

∑

|m|≤n

(n−|m|)!
(n+|m|)! ·

·p|m|
n (κ(ε) υ) q|m|

n (κ(ε)) fn,mYn,m(v) =

=
1

a ε

∑

n≥0

∑

|m|≤n

(n−|m|)!
(n+|m|)! p|m|

n (κ(ε)) q|m|
n (κ(ε)) fn,m Yn,m(v). (5.4)

On the other hand, it can be shown (see Pohánka (1995), (2.15), (3.30),
(3.31)) that (for any function f(v) that belongs to the class S)

1

4π

∫

dΞ′ f(v′)

|s(v) − s(v′)| =
1

a

∑

n≥0

∑

|m|≤n
Dn,m fn,mYn,m(v), (5.5)

where

Dn,m =
1

2n+1
3F2(1/2, 1/2+m, 1/2−m; 3/2+n, 1/2−n; ε2). (5.6)

Therefore, comparing (5.4) and (5.5) we obtain the equality (|m| ≤ n)

(n−|m|)!
(n+|m|)! p|m|

n (κ(ε)) q|m|
n (κ(ε)) =

=
ε

2n+1
3F2(1/2, 1/2+m, 1/2−m; 3/2+n, 1/2−n; ε2). (5.7)

189



V. Pohánka: A solution of the inverse problem of gravimetry . . ., (165–192)

Using the definition of generalized hypergeometric series (see Bateman
and Erdélyi (1953), 4.1.1, 4.1.2) we easily derive the formula

∂ε
ε

2n+1
3F2(1/2, 1/2+m, 1/2−m; 3/2+n, 1/2−n; ε2) =

=
1

2n+1
3F2(3/2, 1/2+m, 1/2−m; 3/2+n, 1/2−n; ε2) = Nn,m (5.8)

(see Pohánka (1995), (3.29)), and thus

Nn,m =
(n−|m|)!
(n+|m|)! ∂ε p|m|

n (κ(ε)) q|m|
n (κ(ε)) =

= − (n−|m|)!
(n+|m|)!

1

ε2
√

1 − ε2

(

∂p|m|
n (κ(ε)) q|m|

n (κ(ε)) +

+p|m|
n (κ(ε)) ∂q|m|

n (κ(ε))
)

. (5.9)

Further, from the Wronskian formula for the Legendre functions (see
Bateman and Erdélyi (1953), 3.2.13, 1.2.15)

P |m|
n (z) ∂zQ

|m|
n (z) −Q|m|

n (z) ∂zP
|m|
n (z) = (−1)m

(n+|m|)!
(n−|m|)!

1

1 − z2
(5.10)

we get using (3.3), (3.4)

∂p|m|
n (u) q|m|

n (u) − p|m|
n (u) ∂q|m|

n (u) =
(n+|m|)!
(n−|m|)!

1

u2 + 1
(5.11)

and thus

∂p|m|
n (κ(ε)) q|m|

n (κ(ε)) − p|m|
n (κ(ε)) ∂q|m|

n (κ(ε)) =
(n+|m|)!
(n−|m|)! ε

2. (5.12)

We denote

Λn,m =
√

1 − ε2 Nn,m (5.13)

(see Pohánka (1995), (4.4)), and from (5.9) and (5.12) we get (|m| ≤ n)

(n−|m|)!
(n+|m|)! ∂p|m|

n (κ(ε)) q|m|
n (κ(ε)) =

ε2

2
(1 − Λn,m), (5.14)

(n−|m|)!
(n+|m|)! p|m|

n (κ(ε)) ∂q|m|
n (κ(ε)) = − ε2

2
(1 + Λn,m). (5.15)
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Therefore, we have

q
|m|
n (κ(ε))

∂q
|m|
n (κ(ε))

∂p
|m|
n (κ(ε))

p
|m|
n (κ(ε))

= − 1 − Λn,m
1 + Λn,m

(5.16)

and formula (4.17) can be expressed in the form of

U1;n,m = − 1

1 − ε2
1

1 + Λn,m
Gn,m. (5.17)

As it was shown in Pohánka (1995), Section 4, Λ0,0 = 1 and all other
coefficients Λn,m (for |m| ≤ n) are absolutely smaller than 1.

Further, in Pohánka (1995), Section 5, the solution of the interior Dirich-
let problem for the rotational ellipsoid was presented in the form of a surface
integral. This can be used to express functions Uk(r): if function [Uk(s)]int

can be expressed in the form of (4.4), and belongs to the class S, then for
r∈Dint we have

Uk(r) =
1

4π

∫

dΞ a2 o(v) · s(v) − r

|s(v) − r|3 uk(v), (5.18)

where s(v) and o(v) are given by (1.6) and (1.9), and

uk(v) =
∑

n≥0

∑

|m|≤n

2

1 + Λn,m
Uk;n,mYn,m(v). (5.19)

It may seem that the expression (4.2) requires less operations be per-
formed than in the expression (5.18), (5.19), as the former contains only
summation, while the latter contains summation and integration. However,
it has to be pointed out, that functions Uk(r) are to be calculated in a 3-
dimensional domain (what is equivalent to a set of 2-dimensional domains).
This means that by using (4.2), the summation has to be performed sepa-
rately for every (calculation) point in this 3-dimensional domain, while by
using (5.18) and (5.19) the summation is performed only for (a suitably
dense set of) points in a 2-dimensional domain – surface S, and then the
integration is performed for every (calculation) point in the 3-dimensional
domain. Thus the number of required operations is approximately the same.

However, there is a substantial advantage in performing the integration
according to (5.18) with respect to the summation according to (4.2). This
is because in the latter case the presence of highly oscillating spherical
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functions requires to take into account a great number of terms in the sum.
On the other hand, by the numerical integration according to (5.18), it is
not necessary to sum such a number of terms, as the integral kernel in (5.18)
is a smooth function decreasing with distance between the calculation and
integration points.

Moreover, the solution in the form of a surface integral can be relatively
easily transformed (in a certain approximation with respect to the parameter
ε that is usually much smaller than 1) to a form containing no sums and
no spherical functions; in this case it is necessary to perform only a single
integration. For this transformation it is advantageous to use (in the case
k = 1) formula (5.17) instead of (4.17), as the former contains a single
transcendental function in denominator, while the latter contains a product
of two transcendental functions (this matter will be presented in a separate
paper).
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