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Diagonality of certain functions
with respect to spherical functions

V. Pohanka
Geophysical Institute of the Slovak Academy of Sciences!

Abstract: It is shown that certain functions of two unit vectors are diagonal when
expressed as a series of spherical functions. These functions arise by decomposing the
kernel of the integral equation corresponding to the Dirichlet and Neumann boundary
problems for the Laplace equation for the rotational ellipsoid into a series of powers of
the numerical eccentricity of ellipsoid.
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1. Introduction

It is well known that the Dirichlet and Neumann boundary problems
for the Laplace equation in some domain can be transformed to the form of
integral equations. In the case that this domain is bounded by the surface of
a rotational ellipsoid, it can be easily shown (see [2]) that solutions of these
equations can be obtained from the solutions of a single integral equation
([2], 2.20) whose kernel is given by ([2], 3.1). This kernel can be expressed
as a series of powers of the numerical eccentricity of ellipsoid ([2], 3.7, 3.6).
The purpose of this work is to prove the equalities ([2], 3.20, 3.21) from
which the diagonality of the integral kernel can be derived.

We use here the notation from [2]: the point of the unit sphere with
angular coordinates &, (0 < & <, 0 < ¢ < 27) is expressed as the unit
vector

v=1sincos) + jsin€ cosy + kcosé, (1.1)
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where unit vectors ¢, 3, k are mutually orthogonal; the solid angle element
is d= = sin{ d¢ dv¢ (any primed quantity is obtained by replacing &, by
¢, ¢'). Spherical functions Y, ,,(v) (they are nonzero only for |m| < n) are
given by

(n — [m))!
(n+ m])!

and they are orthonormal on the surface of the unit sphere ([2], 3.11).

A function of two variables f(v,v’) is diagonal with respect to the basis
represented by the spherical functions if there are such coefficients f,, ,,, that
for any n,m such that |m| < n it holds

Yom(v) = \/(2n +1) Pl (cos €) ™ (1.2)

1
» / A=’ £(0,0') Yom(®') = farm Yom(®) (1.3)

(integration is performed over the surface of the unit sphere). Then this
function can be expressed as a series

Fo.0) =Y o Fan Yam(®) Vi @) (1.4)

(at least formally, as this series need not to converge); the conventions for
writing of sums are given in [2], Section 3. As from (1.2) it follows that
Y m(v) = Yy m(v), if the function f(v,v’) is real, then f . = fo m.
Moreover, if this function is symmetric with respect to the exchange of
variables v, v/, then fy, , = fn,—m and thus coefficients f, , are real.

In analogy to formula ([2], 3.17), using the equality
1 x
P,(v-v) = ST ZWS” Ym(v) Yy, () (1.5)

holding for n > 0 ([1], 3.11.2) and the Cauchy inequality, for any function
f(v,v") which is written in the form (1.4) and any coefficients F}, such that
for jm| <nitis

we get
3 i Frm Youm(0) Y (0)
< (X Ml Yo ®) Yo @) (3, Youn @) Vi (0)) <

2
<
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<7 (X Yrn(®) Vi @) (3 Yo () Vi (2) =
=F2(2n+1)P,(1)*=(2n+1)*F? (1.7)

n

and thus (for n > 0)

<(@2n+1)F,. (1.8)

3 i i Yonan(0) (o)

2. Demonstration of diagonality

We want to demonstrate the diagonality of functions N;(v — v') (for
i > 0), where

M@o—]kaVy. (2.1)

o\ w?

Using formula (1.1) we denote for brevity
v=wvv = cosécos& +sinsiné cos(yp — '), (2.2)
(= (v—v)k=cos¢—cos& (2.3)

(it is |v| < 1, [¢| < 2), so that (v — v')? = 2(1 — v) and quantities v and ¢
satisfy the inequality

<201 —-v). (2.4)

Functions N;(v — v') can be now expressed in the form

, 1 52 7
Nij(v—v') = 2.5
i ) ml—m<%1—m) (2:5)
showing that they are singular for v = 1. Therefore it would be advanta-
geous to express these functions as a limit of some (suitably chosen) non-
singular functions. This is straightforward in the case ¢ = 0: we can write
1 1

No(’v — ’Ul) = m = lim,\_d_ m, (26)



where
dA,v)=V1—=2 v+ A\ (2.7)
(in the next it will always be 0 < A < 1). Using the well known expansion

ﬁ =3 N Pa) (2.8)

(converging for fixed A absolutely and uniformly with respect to variable 1)
and formula (1.5) we get

1 3
dro) o 1 Yom(v) Y5 (v 2.

what demonstrates that function 1/d()\, v-v’) is diagonal with respect to the
basis represented by the functions Y, ,,,(v).

Therefore, we aim to show that there are such functions N;(\, v,v") (for
any ¢ > 0) which are nonsingular, diagonal, symmetric with respect to the
exchange of variables v, v’ and it holds
o) = ¢ 4

d(1,v)2iH1

According to the previous section these functions can be written in the form
(1.4)

Ni(A\v,v) =) >Oz‘m‘<n in(A,m%) Yom(v) Y . (v) (2.11)

and their nonsingularity can be expressed as the requirement that this series
converges (for fixed A\, 0 < A < 1) absolutely and uniformly. From definition
(1.2) it is evident that

N;(v — =limy 1 N;(\,v,?). (2.10)

mYpm(v) =—10pYnm(v) (2.12)

and if N;, (A, x) are well behaved functions of z (for example, if they are
polynomials of x), we can write (2.11) in the form

)\ v, U Z n>0 Z|m|< Z" 81/1) (’U) Y;,m(v/) =
- ZnZO Ni,n()\, o 83}) Z\m‘gn anm(v) Y;;,m(v/) =

= ano(Qn + 1) Nin(A, — 87/,) n(v-), (2.13)



where we used formula (1.5).
Thus let us investigate the result of applying operator 85 and its powers
on a function of v-v’. If we denote

x =1—coscosé, (2.14)
from formulae (2.2) and (2.3) we can find
Oov = —singsing cos(hp—1)) =1 - x — v, (2.15)
(Opv)® = (=singsin &’ sin(p—y))* = 1 - ¢* = 2(1—x)(1—v) —v*.  (2.16)
Then we can write for some function f(v)
05 f(v) = (8yv)? 85 f (v) + (04v) D, f(v) =
= (1= =201-)(1-v) =) Tf W)+ (1 = x =)0 f(v) (2.17)

and we see that the expression on the r.h.s. is a polynomial (of degree
one at the most) of variables y and (2. This means that by applying some
polynomial (of degree k) of operator Oi on function f(v) we get a polynomial
of variables y and ¢? of degree k at the most.

Formulae (2.5), (2.6) and (2.8) indicate that it will be suitable to ex-
press the dependence on v in terms of function d(A,v) (A is now a fixed
parameter). According to (2.7) we have

A ) A2
Byd(\,v) = — O O2d(\,v) = — rOWIE (2.18)
and
=y —v= %(d()\, V)2 — 22y — (1 - )2), (2.19)
1-¢2-2(1—-x)1—v) —v? =
1

= 2 (—dO )" + 220+ (1= VD) d(A,v)? —

— A1 = M) - AN - (1)), (2.20)
We introduce differential operator ¢,

(which has the favourable property that d,z% = az®) and from (2.17) we
get for some function g(A, d(A,v))



93g9(\, d(\,v)) = i(— AN )%+ 2(20x + (1= A2 d(A,v)? —

— A1 = AP - AN - (1))

(e 280 A00) = T35 g d0)) ) =

71/)

— 50 =20 = (1= AP) 5= dug(h. ) =
L g2t (1—=X)2  4AA1 = N2 +422¢C2+ (1 - \)?
T4 (‘ A2 d(\, v)? ) '
- (d(A, v)? 93g(A, d(N,v)) — d(X,v) ag(N, d(X,v))) —
2

- %(1 - %)d(x, V) Bag(\, d(\, 1)) =
(e 2 2 -

- (5 70 ougtn dr ) =

= <_15d+ P()\’X) (5d_1) _ Q()‘?Xag)

GRS =2 g d), (222

where we write for brevity 9; instead of 94y ) and d4 instead of d4(y .y, and
we have denoted

P\ x) = %(%x + (1 =N, (2.23)

QN x,¢) = i(4x(1 — A2 +4ANC+ (1= 0. (2.24)

We see that by applying an operator K (85) (where K (x) is a polynomial of
degree k) on function g(\, d(\,v)) we get a polynomial of variables P(\, x)
and Q(A, x, ¢) of degree k at the most. If the function g(A, d(A,v)) has the
form of a linear combination of only even (or only odd) powers of d(\,v),
the same is true for the function K(E)i) g(\,d(\,v)), because operator 83}
can change the power of d(\,v) only by an even number (decrease it by 0,
2 or 4). Further, if the function g(\,d(A,v)) is a linear combination of odd
powers of d(\,v), function K(@i)g()\,d()\,u)) is a polynomial of variable
Q(A, x, €) of degree exactly k, as in this case operator 83} always increases the
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power of Q(A, x, () by one (this is because operator (d4 — 2)dy cannot cancel
any odd power of d(\,v)). Particularly, if g(\,d(\,v)) is d(\,v)? 1 (with
integer I), then any term of function K(@i)g()\,d()\,u)) not containing
variable P(), x) has to have the form Q(), x, ) d(\,v)?=4~1 (apart from
a numerical coefficient depending only on I and 1), where 0 <1 < k. As we
have P(1,x) = x and Q(1,x,¢) = ¢2, in the limit A — 1— any such term
acquires the form ¢? d(1,v)?/=4=1 (with the same numerical coefficient).
As according to formulae (2.10) and (2.13) it has to hold (for all i > 0)

¢* :
i limy—y- Y7 (204 1) Nin(A, = 03) Pu(v), (2.25)

it is reasonable to adopt that all functions N;,(A,x) are polynomials of
variable = of degree i at the most. Thus we write (for ¢ > 0, n > 0)

Nin(A x) = Zogjgi Nijn(A) 2! (2.26)
and we have for all i > 0 (at least formally)

ano(% + 1) Nin(A\, = 93) Pu(v) =

= ano(% +1) Zogjgz‘ Ni jn(A) (= 03) Pp(v) =

=D e 091N AN ), (2.27)
where we denoted (for 0 < j <)

gi,j()‘ﬂ d()\, V)) = (—1)j ano(%’l + 1) Ni,j,n()\) Pn(l/) (228)
From formula (2.25) we get the condition (i > 0)

_¢ li > 97 gi (A, d(\, ) (2.29)
(1, )2t~ AT Zgg i G Tl ALY ‘
and as on the L.h.s. we have a single odd power of d(1,v) (multiplied by an

even power of (), according to the previous discussion we adopt that (for
all 0 < j <1)



9ij(A2) = gij 2271 (2.30)

(coefficients g; ; could be chosen to depend on A, but this is not necessary).
Thus it has to hold

¢ . 2 %i—1
W =limy_,_ Zogjgi Gi.j alﬁ d()\, 1/) =1 _

=limy ;- Kz(ai) d()‘7 V)Qiilv (231)
where
Ki(x) = Zogm gij . (2.32)

According to (2.22) we introduce for brevity operator D(u,v,z,6,) by
the equality

Dlu,.28.)9(2) = (30 + 5 (B.-D) - 5 (5.-D) o) (239

and thus we have

ai;g()‘? d()‘a l/)) = D(P()‘7 X)a Q()‘7 X C)a d()‘v V)v 5d(>\,u) ) g()‘7 d()‘> l/)) (2'34)

Then we get from (2.31) the formula

<2z'
d(1,v)2+1
= limy—1- Ki(D(P(A,x), QA X, €), d(A, v), 8aany)) d(A, v) >~ =
= Ki(D(x, (%, d(1,v),6401,,))) d(1,v)* (2.35)
or
vt = 22TV Ky(D(u,v, 2,0,)) 2271 (2.36)

(i > 0, u is arbitrary). Now it is easy to find the leading coefficient of
polynomial K;(x): from definitions (2.32) and (2.33) we see that the term
containing v can come on the r.h.s. of (2.36) only from the i-th power of
the part of operator D(u,v, z,d,) linear in v; thus it has to hold

Ui = Z2i+1 iy <— % (5z_2)5z> Z%_l. (237)
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It can be easily proved by induction that for any ¢ > 0 it is

(71 0:=26.) 1) = = (T, == 20) 1) (2:39)

(we define [[p<,,<_1p(n) = 1 and [[y<,<o@(n) = ¢(0); other conventions
are the same as for sums); then we have from (2.37)

241 1y —4i o 2i—1 _
1= 22 i (<1 2 (T] ey, (5= 20)) 27 =

= gii (—1)12% HOSZS%_I(i—z— 1/2) =

o D(1/244) (T(1/241)\?

g (—q)ig LA/240) ,,2%(7) 2.39

(see [1], 1.2.3) and finally
1/ T(1/2) >2

I S €50 B R 2.40
Jii = 52i <F(1/2+i) gi (2:40)
Now we can write polynomial K;(x) in the form
Ki(z) =i ][ ., (= +ai) (2.41)
and inserting in formula (2.36) we get
vl = 22ty (Hoglgi—l(D(u’ v,2,0,) + ai,l))z%*l. (2.42)

According to (2.33) it is clear that in the case i > 1 the term containing z%
will appear on the r.h.s. of (2.42) unless one of the constants a;; is equal
to (2i — 1)?/4. In this way it is possible to find another such values and it
turns up that it could be (for all 0 <1 <i—1)

ai; = (21 +1)%/4. (2.43)
To prove that in this case formula (2.42) holds, we introduce operator

T;(u,v, z,0,) by the formula (i > 0)

Ti(u,0,26.) 9(2) = (e, (D00, 2,62) + (141/2)%))2%g(2) - (2.44)
and thus (2.42) gets the form

vt = 22 g Ti(u, v, 2,6,) 271 (2.45)



We have Ty(u,v,z,0,) =1 and for any i > 0 we get using (2.33)

1
Toor(u, 0, 2,6.) g(2) = (Z((%“)Z )+ 5 (3. -1)3. -

- % (5z—2)5z) Ti(u,v,2,6.) 2%g(2). (2.46)

Now we write operator T;(u,v, z,d;) in the form
T;(u,v,2,0,) = ngi 22 T, (u,v,8,) (2.47)

(it is evident that there are no other powers of z) and for i = 0 we have
Too(u,v,w) = 1 (we define T; j(u,v, w) to be zero if |j| > 7). Inserting
(2.47) in (2.46) we get

le\<z’+1 2% Tit1,5(u,v,6,) =

o1
— qu z2j+2<1((2i+1)2 — (8,+27+2)%) + % (6:+2j+1)(6,+2j+2) —

- A2 24D) | T, 5.42) =

= 3 e # (D = (64 20) Ty (w0, 5,42 +
+u(6,+25+1)(0.+2j+2) T; j(u,v,6,+2) —
—0(0,+254+2)(5,+2j+4) TZ-JJrl(u,v,(sz-i-Q)) (2.48)

and thus we have

Tit1,5(u,v,w) = — %(w—2i+2j—1)(w—|—2i+2j+1) Tij—1(u,v,w+2) +

+u(w+2j+1)(w+2j+2) T; j(u,v,w+2) —
—v(w+254+2)(w+25+4) T j+1(u, v, w+2). (2.49)

Calculation of functions 7; j(u, v, w) for a few low values of i shows that it
could be suitable to write
I'w/2+i4+1) I'(w/2+i4+35+1/2
T, 5 (u, v, w) = (w/2itl) Tlw/2titi+1/2)
’ MNw/24+j+1) T'(w/2+1/2)

Sij(u, v, w) (2.50)
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(thus also S; j(u,v,w) is zero for |j| > 7). Inserting in (2.49) we get the
condition

(w/2+41/2) Sit1(u,v,w) = — (w/2—i4+j—1/2)S; j—1(u,v,w+2) +
+4du(w/245+1/2) S; j (u, v, w+2) —
—4U(w/2+i—|—j+3/2)Si,j+1(u,v,w+2). (2.51)

According to (2.50) we have Sp o(u,v, w) = 1 and calculation of functions
Si.j(u,v,w) for a few low values of i shows that they do not depend on w.
Therefore we write

Sij(u,v,w) =8 j(u,v) (2.52)
and we obtain from (2.51) two conditions for functions S; j(u, v):

Siv1,j(u,v) = = Si j-1(u,v) + 4uS; j(u,v) — 4v S; j1(u,v), (2.53)
0= (i—j+1)Si;j—1(u,v) +4uj S; j(u,v) —4v(i+35+1) S j+1(u,v). (2.54)

We multiply these equations with y? (where ¥ is a parameter) and sum with
respect to index j. If we define the functions

S’i(u) U7y) = Z']‘SZ S’i,j(”?”) yJ7 (255)
we get for them the conditions
4
SiJrl(u)va) = (_y+4u - ?,U)Si(u)vvy)a (256)
4
0= <y(i—6y) + 4ud, — gv (i—l—éy))Si(u,v,y) (2.57)

and we have Sy(u,v,y) = 1. Then we get from (2.56)

4 %
Si(u,v,y) = (— y+4du — ?v) (2.58)
and thus
) qu
(y(z—éy) + 4ud, — m (1+5y)>5i(u,v,y) =
= {(_y+4u_4_v>5y+<y_4_v)4 (—y—|—4u—4—v) =0, (2.59)
Y Y Y
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so that condition (2.57) is satisfied. This means that our presumption (2.52)
was correct and we can get the explicit expression for functions S; ;(u,v)
from (2.55) and (2.58) by using the binomial formula twice. For us it will
be sufficient to know that for fixed i,u,v (¢ > 0), functions S; j(u,v) are
finite and that

S —i(u,v) = (—4v)". (2.60)

We can now write the explicit form of operator T;(u,v,z,0,). Using
formulae (2.47), (2.50), (2.52) and denoting for brevity

Nw/24+i+1) T(w/2+i+5j+1/2)

i, (W) = - 2.61
Qi) F(w/2+j+1) TD(w/2+1/2) (2:61)
(note that for |j| < i it is a polynomial of variable w) we get

Ti(u,v,z,0,) Z| < S; i (u,v) 2% Q4 4(6,) (2.62)
and thus

Ti(u,v,2,0,) Z| » S;i(u,v) Qyj(w) 297 (2.63)
For us only the value w = —1 is interesting: in this case we see from (2.61)

that @Q;;(—1) is for |j| < ¢ nonzero only if j = —i (as I'(«) is infinite only
for = —n, n > 0). Then we get using (2.60) and (2.61) (see also [1], 1.2.3)
fori >0

Ti(u, v, 2,02) Zl j|<i Sij(u,0) Qij(=1) 2771 =

= Sz,—l( v) Qi,— i(—=1) 7 =

(1/2+Z) i1 o2 (T(1/24+10) 2 e
- wn = (i) o

and according to (2.40) this proves formula (2.45). Therefore also formula
(2.42) with (2.43) is valid and the same is true for all previous forms of this
condition up to formula (2.29). Particularly, from (2.36) and (2.34) we get
(i=>0)

(2.64)

V)Qz’—l _ Q()\,X;C)i

Ki(07) d(X, = OB (2.65)
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3. Expression as a series of spherical functions

To proceed further we have to express function d(),v)?~! as a series of
Legendre polynomials; we write

d(\, v)% 1 = ano bin(A) A" Pp(v) (3.1)

and according to (2.8) it is by »(A) = 1. In order to find coefficients b; ,,(\)
for ¢ > 1, we use the formula

Syd(\, v) = l(d()\, V) — ﬂ) (3.2)
2 d(\v)

from which we easily derive the equality

(i+1/2=8y) d(\,v)* T = (i+1/2)(1=2%)d(\,v)* ! (3.3)

and inserting (3.1) in (3.3) we get the condition (n > 0)

(i+1/2—=n—06)) biy1.n(N) = (i4+1/2)(1=A?) b; n(N). (3.4)

From (3.1) it is easily possible to show (by induction with respect to i) that
coefficients b; ,(A) can be expressed in the form of a series of A; then it
follows from (3.4) that these coefficients are polynomials of 1—\? of degree
i (as the operator on the Lh.s. of (3.4) cannot cancel any integer power of
A). Therefore we write (n > 0)

bin(A) = Zoﬁjgi bijn (1=N?)! (3.5)

and we have by, = 1 (we define b; j, to be zero if not 0 < j < i). Then
we get inserting (3.5) in (3.4)

(i4+1/2=n—6)) ZOSjSiJrl bit1jm (1=A?) =
=Y sins Vit (H1/2=n=2))(1=N7) +2j(1-X*) ™) =
= ZO§j§i+1((i+1/2_n_2j) bit1,jn + 2(j+1) bz‘-l—l,j—&-l,n)(l_)‘Q)j =

= (H1/2) Dy big—tn (1=A%) (3.6)

and thus
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(141/2=n=27) bis1,jn + 27 +1) big1,j41,0 = (i+1/2) bijj—1n- (3.7)

Calculation of coefficients b; ;, for a few low values of ¢ indicates that we
can write

(i+1/2) T(n+j—i+1/2)

; T
bi,j,n = (_1) (n+1/2) I‘(l/Q) F(n+i+3/2)

B;ijn (3.8)

(Bo,o,n = 1 and B, j,, is zero if not 0 < j < 4); inserting in (3.7) we get the
formula

(n+2j—i—=1/2) Bit1,jm — 2(j+1)(n+j—i—1/2) Bit1j41,n =
= (n+i—|—3/2) Bi,j—l,n- (3.9)

Calculation of coefficients B; ;,, for a few low values of ¢ shows that they do
not depend on n. Therefore we write

Bijn = Bi (3.10)
and we get from (3.9) two conditions for coefficients B; ;

Bit1,j —2(j+1) Biy1,j+1 = Bij-1, (3.11)
J Biy1; —j(+1) Bipr41 = (i41) Bijj-1. (3.12)

Then we easily find that

(i—j) Bij = (2i—37)(j+1) Bij1 (3.13)
and we get (for 0 < j <)
(2i—j)!
»J ]' (Z—])' ( )

This value of B; ; satisfies both conditions (3.11), (3.12) and thus formula
(3.10) is valid. For the coefficients b; ; , we get from (3.8), (3.10) and (3.14)
the expression (0 < j <i, n >0)

(2i—j)! T(i+1/2) D(n+j—i+1/2)
-y T(1/2) T(n+it+3/2)

and function d(\, )%~ is (for i > 0) expressed by formulae (3.1), (3.5) and
(3.15). We note that (for 0 < j < 4) coefficient b; j,, is a rational function

bi,j,n = (—1)Z (n+1/2)

(3.15)
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of n and it contains n only in denominator which is a polynomial of n of
degree 2i — j. This means that the series on the r.h.s. of (3.1) converges
(for fixed A, 0 < A < 1) absolutely and uniformly.

Returning to formula (2.28) we get according to (2.30) and (3.1)

, 1
. — (1Y g . n
Nijn(A) = (=1) g; 1 bin(A) A (3.16)
and from (2.26) using (2.32) we have
1 n
Nin(\ z) = Tl bin(A) A" K;(—x). (3.17)

Inserting in (2.11) we get the required diagonal expression of functions
Ni()‘7valu/)

NZ()\7 v, U/) =

— 1 n 2 * /

= ano Zlmlén 1 bin(A) A" Ki(=m®) Yym(v) Yy, (V) (3.18)
which can be written in the form analogical to (2.13) as

Ni(A\v,0) = ano bin(A) A" K(0F) Pr(v). (3.19)
According to (2.41) and (2.43) we have

=(V'al] ., (mti+1/2) =

=(-1)'gi % (3.20)
and thus for |m| < n it holds
Ko=) = e [T, 101722 = mi?] <
<gi[[yoe ((+1/2)° +m?) <
<0 [Ty, (04172 4 02) (3.21)
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Recalling that (1.8) follows from (1.6), we get from (3.21) using (1.5) and
(2.12) the bound

<

K0 Pu)] = 5 |32 K1) Youn(®) Vi (@)

<0 TLyepes (04172 402, (3.22)

as this bound is a polynomial of n, the series on the r.h.s. of (3.19) (and
thus also the series on the r.h.s. of (3.18)) converges (for fixed A, 0 < A < 1)
absolutely and uniformly. Therefore it is possible to exchange the order of
summation and derivation on the r.h.s. of (3.19) and using (3.1) and (2.65)
to get

Ni(A,v,v') = K;(97) ano bin(A) N Pp(v) =

. by (
— K03 d vt = SO (329

This means that we have fulfilled all requirements we have posed on func-
tions N;(A, v, v'); particularly, according to (2.24) formula (2.10) is valid.

We still find a bound on functions N; (A, v,v’): from definitions (2.3) and
(2.14) we can easily derive the inequality

0 <4y <C*+4 (3.24)
then using (2.4) and (2.7) we get from (2.24) (for 0 < A < 1)
0<4Q(Nx,¢) =41 =X x +4X¢C + (1 -N)' <

<A =N A1 =22+ O0A = N2+ 3=
1T+N2((A =22+ XD <
<AT+N2 (A =22+2010 —v)) = (1 +1)2d(\v)? (3.25)

and we have (for 0 <\ < 1)

QA X, ¢) < (1+M)?

0= 00 1

IN

<1. (3.26)
For 0 < A < 1 we can also easily prove the inequality
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ANV =1-2w+A> - (1-v) (3.27)

DN =

(for —1 < v < 0 the Lh.s. is not smaller than 1 while the r.h.s. is not
greater than 1; for 0 < v < 1 the Lh.s. has as a function of A a minimum
for A = v, this minimum is equal to 1 — »? and thus not smaller than the
r.h.s.). Thus we obtain according to (3.23) and (2.2) (for 0 < A < 1) the
bound

2 2
0 < N;(\,v,v) < < = ) 3.28
s N v o) s g5 = 20 —v) -0 (3:28)
Now we can write using (2.10) for any bounded function f(v)
1
/d (v—7") f(V) = —/dE' limy_1_ N;(\,v,2) f(v') =

4 a7

— limy —/d N\ v, o) f(), (3.29)

as according to (3.28) functions N;(\,v,v’) are uniformly (with respect to
A) bounded by an integrable function. Then we get using (3.18), (3.5),
(3.15), (3.20), (2.40) and the orthonormality of spherical functions (i > 0,
im| <n)

47r/d (v = ¥) Yo m(v )_hm)‘_’l__/d (A0, 0) Yum(v) =

. 1
= lll’n)\ﬁlf m bz,n()\) )\n KZ(—mQ) Yn’m(’v) =
1
= 5 o Ki(=m?) Yo (v) =

1 (20! T(1/2) TI'(n—i+1/2) T'(m+i+1/2)

-~ 22iFl gl T(i41/2) T(n+i+3/2) T'(m—i+1/2)
1 I'(n—i+1/2) I'(m+i+1/2)

== Y.m 3.30
> T it3/2) Tm—ixi/2) Lnm®) (3:30)

(see [1], 1.2.15). Thus functions N;(v — v') (for i > 0) are diagonal with

respect to the basis represented by the functions Y,  (v).

n,m(v) =
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