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Solution of the Dirichlet and Neumann
boundary problems for the Laplace
equation for the rotational ellipsoid
by the integral equation method

V. Pohánka
Geophysical Institute of the Slovak Academy of Sciences1

A bs t r a c t : The Dirichlet and Neumann boundary problems for the Laplace equation

for the rotational ellipsoid are expressed in the form of integral equations. These equations

are solved by the diagonalization of their integral kernels.

1. Introduction

It is well known that the Dirichlet and Neumann boundary problems
for the Laplace equation in some domain can be transformed to the form
of an integral equation by expressing the potential as the single-layer, resp.
double-layer potential. In the case of the Dirichlet problem we write the
potential in the form

V (r) =
1

4π

∫

S
dσ · s − r

|s − r|3 u1(s) +
1

4π

∫

S
dσ

1

|s − r| u0(s), (1.1)

where r is the radius vector of an arbitrary point in space, S is the (suffi-
ciently smooth) boundary of the bounded domain D, s is the radius vector
of an arbitrary point of the surface S and dσ is the vector surface element
of the surface S at the point s which can be written as

dσ = dσ n(s), (1.2)

where dσ is the corresponding scalar surface element and n(s) is the unit
vector of the external normal to the surface S at the point s. The second
term on the r.h.s. of (1.1) is necessary only in the case of the exterior
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problem (as the first term alone cannot describe a potential decreasing at
infinity as 1/|r|) and the function u0(s) can be chosen arbitrarily with the
single condition that its integral over the whole surface has to have a given
value. If we denote the inner (resp. outer) limit of the function f(r) at
the point s of the surface S as [f(s)]int (respectively [f(s)]ext), we get from
(1.1) the well-known formula

[V (s)]int =
1

2
u1(s) +

1

4π

∫

S
dσ′ n(s′) · s′ − s

|s′ − s|3 u1(s
′) (1.3)

for the interior problem and

[V (s)]ext =− 1

2
u1(s) +

1

4π

∫

S
dσ′ n(s′) · s′ − s

|s′ − s|3 u1(s
′) +

+
1

4π

∫

S
dσ′

1

|s′ − s| u0(s
′) (1.4)

for the exterior problem (s′ is again a point of the surface S). Similarly in
the case of the Neumann problem we have for the potential the expression

V (r) =
1

4π

∫

S
dσ

1

|s − r| u2(s) (1.5)

and if we denote the normal component of the inner (resp. outer) limit of a
gradient of the function f(r) at the point s as [νsf(s)]int = n(s)·[∇sf(s)]int

(resp. as [νsf(s)]ext = n(s) · [∇sf(s)]ext), we get from (1.5) the formula

[νsV (s)]int =
1

2
u2(s) +

1

4π

∫

S
dσ′ n(s) · s′ − s

|s′ − s|3 u2(s
′) (1.6)

for the interior problem and

[νsV (s)]ext = − 1

2
u2(s) +

1

4π

∫

S
dσ′ n(s) · s′ − s

|s′ − s|3 u2(s
′) (1.7)

for the exterior problem. We denote for brevity

n(s, s′) = 2 n(s) · s − s′

|s − s′|3 ; (1.8)

as it can be shown that for a sufficiently smooth surface S the function
n(s, s′) can be majorized by a function c/|s − s′| (where c is a suitable
constant), the integrals in the formulae (1.3), (1.4), (1.6) and (1.7) exist. It
can be also easily shown that it holds
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1

4π

∫

S
dσ′ n(s′, s) = 1. (1.9)

The integral formulae (1.3), (1.4) are special cases of the integral equation

g1(s) = f1(µ, s) +
µ

4π

∫

S
dσ′ n(s′, s) f1(µ, s

′); (1.10)

writing f1(µ, s) = u1(s) we get for µ = 1 and

g1(s) = 2 [V (s)]int (1.11)

the formula (1.3), while for µ = −1 and

g1(s) = − 2

(

[V (s)]ext −
1

4π

∫

S
dσ′

1

|s′ − s| u0(s
′)

)

(1.12)

the formula (1.4). Similarly the integral formulae (1.6), (1.7) are special
cases of the integral equation

g2(s) = f2(µ, s) +
µ

4π

∫

S
dσ′ n(s, s′) f2(µ, s

′); (1.13)

writing f2(µ, s) = u2(s) we get for µ = −1 and

g2(s) = 2 [νsV (s)]int (1.14)

the formula (1.6), while for µ = 1 and

g2(s) = − 2 [νsV (s)]ext (1.15)

the formula (1.7). The integral equations (1.10), (1.13) are mutually conju-
gate.

2. Integral equations for the rotational ellipsoid

Our aim is to solve the integral equations (1.10), (1.13) in the case that
the surface S has the form of a rotational ellipsoid. We introduce the rect-
angular coordinate system with the origin in the centre of the ellipsoid and
the base vectors i, j,k so that the unit vector k is parallel to the rotational
axis. In the corresponding spherical coordinate system with the coordinates
r, ϑ, ϕ we can write the radius vector r as
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r = r (i sinϑ cosϕ+ j sinϑ sinϕ+ k cosϑ). (2.1)

Let the equatorial (resp. polar) radius of the ellipsoid be a (resp. b); we
shall assume that b ≤ a and write

b = a
√

1 − ε2, (2.2)

where 0 ≤ ε < 1. Then the surface S is defined in the parametric form as

r = s(ξ, ψ), (2.3)

where

s(ξ, ψ) = a (i sin ξ cosψ + j sin ξ sinψ + k
√

1 − ε2 cos ξ) (2.4)

and 0 ≤ ξ ≤ π, 0 ≤ ψ < 2π (according to our convention from the pre-
vious section the vector r satisfying (2.3) will be written as s). Then we
get comparing (2.1) with (2.3) and (2.4) the parametric expression of the
spherical coordinates of a point of the surface S

r= a
√

1 − ε2(cos ξ)2,

ϑ= arccos

√
1 − ε2 cos ξ

√

1 − ε2(cos ξ)2
,

ϕ= ψ. (2.5)

The vector surface element of the surface S can be calculated by the
formula

dσ = η ∂ξs(ξ, ψ) × ∂ψs(ξ, ψ) dξdψ, (2.6)

where η is chosen so that the element has the required orientation (η2 = 1).
Using (2.4) we get that η = 1 and

dσ = a2 o(ξ, ψ) dΞ, (2.7)

where

o(ξ, ψ) = i
√

1 − ε2 sin ξ cosψ + j
√

1 − ε2 sin ξ sinψ + k cos ξ (2.8)

and

dΞ = sin ξ dξdψ. (2.9)
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Further we introduce the unit vector

v = i sin ξ cosψ + j sin ξ sinψ + k cos ξ (2.10)

and we can write any function f(ξ, ψ) shortly as f(v). Denoting

k(v) = |o(v)| =
√

1 − ε2(sin ξ)2 (2.11)

we get from (2.7) according to (1.2)

dσ = a2 k(v) dΞ (2.12)

and

n(s) = n(s(v)) =
o(v)

k(v)
. (2.13)

For arbitrary vector w we define the function

l(w) =
√

w2 − ε2(w·k)2; (2.14)

then using the formulae (2.4), (2.14), (2.13) and (2.8) we can calculate

|s − s′| = |s(v) − s(v′)| = a l(v − v′), (2.15)

n(s) · (s − s′) = n(s(v)) · (s(v) − s(v′)) = a
√

1 − ε2
(1 − v·v′)

k(v)
(2.16)

and from the formula (1.8) we have

n(s, s′) = n(s(v), s(v′)) =

√
1 − ε2

a2

2 (1 − v·v′)

k(v) l(v − v′)3
=

=

√
1 − ε2

a2

(v − v′)2

k(v) l(v − v′)3
. (2.17)

Inserting the expressions (2.12) and (2.17) in the integral equations (1.10)
and (1.13) we get

g1(s(v)) = f1(µ, s(v)) + µ
√

1 − ε2
1

4π

∫

dΞ′ (v − v′)2

l(v − v′)3
f1(µ, s(v′)), (2.18)

k(v) g2(s(v)) = k(v) f2(µ, s(v)) +

+µ
√

1 − ε2
1

4π

∫

dΞ′ (v − v′)2

l(v − v′)3
k(v′) f2(µ, s(v′)) (2.19)

and we see that these equations are special cases of the single equation
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g(v) = f(µ,v) + µ
√

1 − ε2
1

4π

∫

dΞ′ N(v − v′) f(µ,v′), (2.20)

where

N(w) =
w2

l(w)3
. (2.21)

As it holds (w·k)2 ≤ w2, we can derive from (2.14) the inequality
√

1 − ε2 |w| ≤ l(w) ≤ |w| (2.22)

and from (2.21) then follows the bound

1

|w| ≤ N(w) ≤ 1
√

1 − ε2
3

1

|w| (2.23)

showing that the kernel of the integral equation (2.20) is weakly singular.
It will also be useful to express explicitly the integral term in the formula

(1.12): using the formulae (2.12) and (2.15) we get

1

4π

∫

S
dσ′

1

|s′ − s| u0(s
′) = a

1

4π

∫

dΞ′ 1

l(v − v′)
k(v′) u0(s(v′)) (2.24)

and putting

u0(s(v)) =
1

a k(v)
u0, (2.25)

where u0 is a constant (to be defined later) we get

1

4π

∫

S
dσ′

1

|s′ − s| u0(s
′) = u0

1

4π

∫

dΞ′ 1

l(v − v′)
. (2.26)

3. Diagonalization of the integral kernel

We first write the function N(w) in the form of a power series with
respect to the parameter ε2. According to (2.21) and (2.14) we have

N(w) =
1

|w|

(

1 − ε2(w·k)2

w2

)−3/2

(3.1)

and we can use the binomial formula
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(1 − x)−α =
∑

i≥0

(−α
i

)

(−x)i =
∑

i≥0

1

i!

Γ(i+ α)

Γ(α)
xi (3.2)

(see [1], 1.2.4), where the series on the r.h.s. converges absolutely and
uniformly for |x| ≤ c (for any 0 < c < 1). Then we get from (3.1) the
expression

N(w) =
1

|w|
∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(3/2)

(

ε2(w·k)2

w2

)i

, (3.3)

where the series on the r.h.s. converges absolutely and uniformly (as we
have 0 ≤ ε < 1). Note that we adopted the following abbreviate notation
of sums:

∑

n≥k (resp.
∑

n≤k) is the summation over n (the first variable
in the condition) from k to ∞ (resp. from −∞ to k) and

∑

k≤n≤l is the
summation over n (the middle variable in the condition) from k to l when
k ≤ l and zero otherwise (

∑

|n|≤k is the abbreviation of
∑

−k≤n≤k).
Analogically to (3.1) and (3.3) we can easily derive the formulae

1

l(w)
=

1

|w|

(

1 − ε2(w·k)2

w2

)−1/2

(3.4)

and

1

l(w)
=

1

|w|
∑

i≥0

1

i!

Γ(i+ 1/2)

Γ(1/2)

(

ε2(w·k)2

w2

)i

, (3.5)

where the series on the r.h.s converges absolutely and uniformly.
We denote for brevity

Ni(w) =
1

|w|

(

(w·k)2

w2

)i

(3.6)

and thus

N(w) =
∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(3/2)
ε2iNi(w). (3.7)

Then we have for any bounded function f(v)

1

4π

∫

dΞ′ N(v − v′) f(v′) =

=
∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(3/2)
ε2i

1

4π

∫

dΞ′ Ni(v − v′) f(v′), (3.8)
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as according to (3.6) the series expressing the function N(v − v′) can be
majorized by an integrable function (see also (2.23)).

The form of the functions Ni(v − v′) indicates that it will be useful to
express the function f(v) as a series of spherical functions. These are defined
by the formula

Yn,m(v) = Cn,m P|m|
n (cos ξ) eimψ (3.9)

(see (2.10) for the connection between v and ξ, ψ), where Pm
n (u) are the

associated Legendre functions and

n ≥ |m| : Cn,m =

√

(2n+ 1)
(n− |m|)!
(n+ |m|)! ,

n < |m| : Cn,m = 0 (3.10)

are the normalization constants. The basic property of the spherical func-
tions is their orthonormality: for n ≥ |m|, n′ ≥ |m′| it holds

1

4π

∫

dΞ Y∗
n,m(v) Yn′,m′(v) = δn,n′ δm,m′ (3.11)

([1], 3.12.19, 3.12.21), where the asterisk denotes the complex conjugation.
Spherical functions form a complete system of functions on the sphere: any
function f(v) continuous on the sphere can be expressed as a convergent
series

f(v) =
∑

n≥0

∑

|m|≤n
fn,m Yn,m(v), (3.12)

where the coefficients fn,m are given by

fn,m =
1

4π

∫

dΞ f(v)Y∗
n,m(v). (3.13)

As from the definition (3.9), (3.10) it follows that

Y∗
n,m(v) = Yn,−m(v), (3.14)

the coefficients fn,m of a real function f(v) satisfy the equality

f∗n,m = fn,−m. (3.15)

For us it is useful the decomposition
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Pn(v·v′) =
1

2n+ 1

∑

|m|≤n
Yn,m(v) Y∗

n,m(v′) (3.16)

holding for n ≥ 0 ([1], 3.11.2). Using the Cauchy inequality and the formula
(3.16) we get for any function f(v) which is written in the form (3.12)

∣

∣

∣

∑

|m|≤n
fn,mYn,m(v)

∣

∣

∣

2
≤

≤
(

∑

|m|≤n
|fn,m|2

)(

∑

|m|≤n
Yn,m(v) Y∗

n,m(v)
)

=

=
(

∑

|m|≤n
|fn,m|2

)

(2n+ 1)Pn(1) = (2n+ 1)
∑

|m|≤n
|fn,m|2 (3.17)

and introducing the norm defined by

‖fn,∗‖ =

√

(2n+ 1)
∑

|m|≤n
|fn,m|2 (3.18)

we get the bound

|f(v)| ≤
∑

n≥0

∣

∣

∣

∑

|m|≤n
fn,mYn,m(v)

∣

∣

∣ ≤
∑

n≥0
‖fn,∗‖. (3.19)

For any function f(v) given in the form (3.12) and such that the series on
the r.h.s. of (3.19) converges (such a function will be called for brevity
as belonging to the class S), the series on the r.h.s. of (3.12) converges
absolutely and uniformly.

The main result of this work is the following one: for i ≥ 0, |m| ≤ n it
holds

1

4π

∫

dΞ′ Ni(v − v′) Yn,m(v′) = Ni,n,m Yn,m(v), (3.20)

where

Ni,n,m =
1

2

Γ(n− i+ 1/2)

Γ(n+ i+ 3/2)

Γ(m+ i+ 1/2)

Γ(m− i+ 1/2)
. (3.21)

The formula (3.20) shows that the integral kernels Ni(v − v′) are diagonal
with respect to the basis represented by the spherical functions. Unfortu-
nately, the derivation of the formulae (3.20) and (3.21) is too long to be
presented here; therefore it will be published in the next volume of this
periodical.

From the formula (3.20) we get for any function f(v) that belongs to the
class S
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1

4π

∫

dΞ′ Ni(v − v′) f(v′) =
∑

n≥0

∑

|m|≤n
Ni,n,m fn,mYn,m(v), (3.22)

as the functions Ni(v − v′) are according to (3.6) for any i ≥ 0 bounded
by the integrable function 1/|v − v′| and the series (3.12) expressing the
function f(v) is according to (3.19) majorized by a convergent series with
constant members. Now we investigate the convergence of the series on the
r.h.s. of (3.22): we denote for brevity

qi,k =

∣

∣

∣

∣

Γ(k + i+ 1/2)

Γ(k − i+ 1/2)

∣

∣

∣

∣

; (3.23)

then qi,k is always non-zero and qi,−k = qi,k (see [1], 1.2.3); as for i ≥ 0,
k ≥ 0 it holds

qi,k+1 =

∣

∣

∣

∣

Γ(k + i+ 3/2)

Γ(k − i+ 3/2)

∣

∣

∣

∣

=

∣

∣

∣

∣

Γ(k + i+ 1/2)

Γ(k − i+ 1/2)

∣

∣

∣

∣

∣

∣

∣

∣

k + i+ 1/2

k − i+ 1/2

∣

∣

∣

∣

≥ qi,k, (3.24)

qi,k is for i ≥ 0, k ≥ 0 a nondecreasing function of k. Therefore we have for
i ≥ 0, |m| ≤ n

qi,m ≤ qi,n (3.25)

and thus

|Ni,n,m| =
1

2

1

n+ i+ 1/2

∣

∣

∣

∣

Γ(n− i+ 1/2)

Γ(n+ i+ 1/2)

Γ(m+ i+ 1/2)

Γ(m− i+ 1/2)

∣

∣

∣

∣

≤

≤ 1

2n+ 2i+ 1
. (3.26)

According to the definition (3.18) we then have (as i ≥ 0)

‖Ni,n,∗ fn,∗‖ ≤ 1

2n+ 2i+ 1
‖fn,∗‖ ≤ 1

2n+ 1
‖fn,∗‖ (3.27)

and therefore, if the function f(v) belongs to the class S, then the function
defined by the r.h.s. of (3.22) also belongs to the class S and, moreover, the
series expressing this function also converges uniformly with respect to i.

Now we can insert the expression (3.22) in the formula (3.8) and exchange
the order of summations; we get

1

4π

∫

dΞ′ N(v − v′) f(v′) =

=
∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(3/2)
ε2i

∑

n≥0

∑

|m|≤n
Ni,n,m fn,m Yn,m(v) =

=
∑

n≥0

∑

|m|≤n
Nn,m fn,m Yn,m(v), (3.28)
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where

Nn,m =
∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(3/2)
ε2iNi,n,m =

=
1

2

∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(3/2)

Γ(n− i+ 1/2)

Γ(n+ i+ 3/2)

Γ(m+ i+ 1/2)

Γ(m− i+ 1/2)
ε2i =

= (−1)n+m
∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(1/2)

Γ(i+m+ 1/2)

Γ(i+ n+ 3/2)

Γ(i−m+ 1/2)

Γ(i− n+ 1/2)
ε2i =

= (−1)n+m 1

2

Γ(1/2 +m)

Γ(3/2 + n)

Γ(1/2 −m)

Γ(1/2 − n)
·

· 3F2(3/2, 1/2+m, 1/2−m; 3/2+n, 1/2−n; ε2) =

=
1

2n+ 1
3F2(3/2, 1/2+m, 1/2−m; 3/2+n, 1/2−n; ε2) (3.29)

(see [1], 1.2.3 and 4.1.1, 4.1.2).
We still express the integral on the r.h.s. of (2.26): comparing the for-

mulae (3.3) and (3.5) we can easily show that analogically to (3.28) and
(3.29) it holds

1

4π

∫

dΞ′ 1

l(v − v′)
f(v′) =

∑

n≥0

∑

|m|≤n
Dn,m fn,m Yn,m(v), (3.30)

where

Dn,m =
1

2

∑

i≥0

1

i!

Γ(i+ 1/2)

Γ(1/2)

Γ(n− i+ 1/2)

Γ(n+ i+ 3/2)

Γ(m+ i+ 1/2)

Γ(m− i+ 1/2)
ε2i =

=
1

2n+ 1
3F2(1/2, 1/2+m, 1/2−m; 3/2+n, 1/2−n; ε2). (3.31)

According to (3.9)–(3.13) we get for f(v) = 1 = Y0,0(v) the formula

1

4π

∫

dΞ′ 1

l(v − v′)
=D0,0 = 3F2(1/2, 1/2, 1/2; 3/2, 1/2; ε2) =

= 2F1(1/2, 1/2; 3/2; ε2) =
arcsin ε

ε
(3.32)

(see [1], 2.8.1, 2.8.13).

4. Solution of the integral equation

We return to the integral equation (2.20) and write the functions g(v)
and f(µ,v) in the form (3.12)
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g(v) =
∑

n≥0

∑

|m|≤n
gn,m Yn,m(v), (4.1)

f(µ,v) =
∑

n≥0

∑

|m|≤n
fn,m(µ) Yn,m(v) (4.2)

and we propose that these functions belong to the class S. Then we get from
(2.20) using (4.1), (4.2) and (3.28)

∑

n≥0

∑

|m|≤n
gn,m Yn,m(v) =

∑

n≥0

∑

|m|≤n
fn,m(µ) Yn,m(v) +

+µ
√

1 − ε2
∑

n≥0

∑

|m|≤n
Nn,m fn,m(µ) Yn,m(v) (4.3)

and denoting

Λn,m =
√

1 − ε2 Nn,m (4.4)

we finally have (for |m| ≤ n)

gn,m = (1 + µΛn,m) fn,m(µ). (4.5)

From the definitions (4.4), (3.29) and the inequality (3.26) we easily get the
bound (|m| ≤ n)

|Λn,m| ≤
√

1 − ε2
1

2

∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(3/2)

ε2i

n+ i+ 1/2
= Λn,n (4.6)

and we see that Λn,n is (strongly) decreasing function of n. As for n ≥ 0,
i ≥ 0 it holds

1

(2n+ 1)(i + 1/2)
≤ 1

n+ i+ 1/2
≤ 1

i+ 1/2
, (4.7)

using (3.2) we get for n ≥ 0

1

2n+ 1

1√
1 − ε2

≤ 1

2

∑

i≥0

1

i!

Γ(i+ 3/2)

Γ(3/2)

ε2i

n+ i+ 1/2
≤ 1√

1 − ε2
(4.8)

and thus for n ≥ 0 we have

1

2n+ 1
≤ Λn,n ≤ 1. (4.9)

Therefore it holds Λ0,0 = 1 and all other coefficients Λn,m (for |m| ≤ n) are
absolutely smaller than 1.

Now it is easy to find the solution of Eq. (4.5): in the case −1 < µ ≤ 1
we have simply
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fn,m(µ) =
1

1 + µΛn,m
gn,m (4.10)

for all |m| ≤ n, whereas in the case µ = −1 it has to be g0,0 = 0, the value
of f0,0(−1) is arbitrary and the formula (4.10) holds for |m| ≤ n, n ≥ 1. In
both cases it is evident that if the function g(v) belongs to the class S, the
same is holding for the function f(µ,v).

5. Solution of the boundary problems

We can now apply the results of the previous section to the four bound-
ary problems described in Section 1. In the case of the Dirichlet problem we
compare Eqs (2.20), (2.18) and (1.10) and we get

f(µ,v) = f1(µ, s(v)) = u1(s(v)), (5.1)

where the function s(v) is given by the formula (2.4). For the interior
problem we have µ = 1 and using (1.11) we get

g(v) = g1(s(v)) = 2 [V (s(v))]int. (5.2)

Then we have according to (4.1), (3.12) and (3.13) (for |m| ≤ n)

gn,m =
1

4π

∫

dΞ 2 [V (s(v))]int Y∗
n,m(v) (5.3)

and using (5.1), (4.2) and (4.10) we get

u1(s(v)) =
∑

n≥0

∑

|m|≤n

1

1 + Λn,m
gn,m Yn,m(v), (5.4)

where Λn,m is given by (4.4) and (3.29)

Λn,m =

=
1

2n+ 1

√

1 − ε2 3F2(3/2, 1/2+m, 1/2−m; 3/2+n, 1/2−n; ε2). (5.5)

The resulting (interior) potential can be written according to the formulae
(1.1) and (2.7) in the form

V (r) =
1

4π

∫

dΞ a2 o(v) · s(v) − r

|s(v) − r|3 u1(s(v)). (5.6)
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For the exterior problem we have µ = −1 and using (1.12), (2.26) and (3.32)
we get

g(v) = g1(s(v)) = − 2

(

[V (s(v))]ext − u0
arcsin ε

ε

)

(5.7)

and thus

g0,0 =
1

4π

∫

dΞ (− 2)

(

[V (s(v))]ext − u0
arcsin ε

ε

)

. (5.8)

As it has to hold g0,0 = 0, we get for the constant u0

u0 =
ε

arcsin ε

1

4π

∫

dΞ [V (s(v))]ext (5.9)

and then we have (for |m| ≤ n, n ≥ 1)

gn,m =
1

4π

∫

dΞ (− 2) [V (s(v))]ext Y∗
n,m(v) (5.10)

and finally

u1(s(v)) =
∑

n≥1

∑

|m|≤n

1

1 − Λn,m
gn,m Yn,m(v). (5.11)

We could add to the expression on the r.h.s. a constant term (corresponding
to the member of the sum with n = 0), but such a term has no effect on the
resulting (exterior) potential that is given according to (1.1), (2.7), (2.12)
and (2.25) by the formula

V (r) =
1

4π

∫

dΞ a2 o(v) · s(v) − r

|s(v) − r|3 u1(s(v)) +

+
1

4π

∫

dΞ a
1

|s(v) − r| u0. (5.12)

In the case of the Neumann problem we compare Eqs (2.20), (2.19) and
(1.13) and we get

f(µ,v) = k(v) f2(µ, s(v)) = k(v) u2(s(v)). (5.13)

For the interior problem we have µ = −1 and using (1.14) we get

g(v) = k(v) g2(s(v)) = 2 k(v) [ν
s(v)V (s(v))]int . (5.14)

Then we have (for |m| ≤ n)
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gn,m =
1

4π

∫

dΞ 2 k(v) [ν
s(v)V (s(v))]int Y∗

n,m(v) (5.15)

and, as it has to be g0,0 = 0, the input has to satisfy the condition

1

4π

∫

dΞ k(v) [ν
s(v)V (s(v))]int = 0. (5.16)

Using (5.13), (4.2) and (4.10) we get

u2(s(v)) =
1

k(v)

(

u0 +
∑

n≥1

∑

|m|≤n

1

1 − Λn,m
gn,m Yn,m(v)

)

, (5.17)

where u0 is arbitrary constant. For the exterior problem we have µ = 1 and
using (1.15) we get

g(v) = k(v) g2(s(v)) = − 2 k(v) [ν
s(v)V (s(v))]ext . (5.18)

Then we have (for |m| ≤ n)

gn,m =
1

4π

∫

dΞ (− 2) k(v) [ν
s(v)V (s(v))]ext Y∗

n,m(v) (5.19)

and finally

u2(s(v)) =
1

k(v)

∑

n≥0

∑

|m|≤n

1

1 + Λn,m
gn,m Yn,m(v). (5.20)

The resulting potential can be written according to the formulae (1.5) and
(2.12) in the form

V (r) =
1

4π

∫

dΞ a2 1

|s(v) − r| k(v) u2(s(v)), (5.21)

where the function u2(s(v)) is for the interior problem given by (5.17) and
for the exterior problem by (5.20). At the end we note that for any of the
mentioned boundary problems the function g(v) has to belong to the class S.

6. Discussion

Finally we have to compare our method of the solution of the boundary
problems for the potential in the interior or exterior of a rotational ellipsoid
with the standard one. It is well known that the Laplace equation can
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be solved in the ellipsoidal coordinates by separation of variables (see for
example [1], Chapters 15 and 16) and the potential can be expressed as
a series of the ellipsoidal harmonics (see for example [2], Chapter 1). For
better comparison we write the formulae expressing the dependence of the
spherical coordinates on the ellipsoidal coordinates (coordinates of oblate
spheroid) υ, ξ, ψ in a form little different from Eq. 1–103 in [2]

r= a
√

(1 − ε2)υ2 + ε2(sin ξ)2,

ϑ= arccos

√
1 − ε2 υ cos ξ

√

(1 − ε2)υ2 + ε2(sin ξ)2
,

ϕ= ψ, (6.1)

where υ ≥ 0, 0 ≤ ξ ≤ π, 0 ≤ ψ < 2π, 0 ≤ ε < 1. We see that for υ = 1
we get from (6.1) the formula (2.5) expressing parametrically the boundary
surface S; thus in the interior domain it is 0 ≤ υ < 1 and in the exterior
domain υ > 1. The function h(r) harmonic in the interior domain can be
written in the form

h(r) =
∑

n≥0

∑

|m|≤n
hn,m

(

P|m|
n (iκ(ε) υ)/P|m|

n (iκ(ε))
)

Yn,m(v), (6.2)

while for the function harmonic in the exterior domain it is

h(r) =
∑

n≥0

∑

|m|≤n
hn,m

(

Q|m|
n (iκ(ε) υ)/Q|m|

n (iκ(ε))
)

Yn,m(v), (6.3)

where Q
|m|
n (u) are the Legendre functions of the second kind (see [1], Chap-

ter 3), variable v is given by (2.10) and

κ(ε) =

√
1 − ε2

ε
. (6.4)

On the surface S both expressions (6.2) and (6.3) give

h(s) =
∑

n≥0

∑

|m|≤n
hn,m Yn,m(v) (6.5)

and thus the solution of the Dirichlet problem can be easily found (only a
little more complicated it is for the Neumann problem).

From the theoretical standpoint our approach is just another form of
solution of these boundary problems; however, from the practical standpoint
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(where the word practical means application in another branch of theory,
for example in theoretical gravimetry) the situation is slightly different. In
both approaches the solution is expressed by an infinite series which cannot
be written in a closed form (by the author’s knowledge). In our approach
this is complicated by the presence of surface integrals in resulting formulae.
However, it seems that our approach has two advantages: the first one is
that the potential is always expressed in a form containing no singularities
in the domain of its harmonicity, while in the ellipsoidal coordinates we
have a singularity on a disk defined by ϑ = π/2, 0 ≤ r ≤ a ε (compared to
the point singularity r = 0 in the spherical coordinates). This singularity
has no effect for the exterior problems which are mostly dealing with in
the practice, but it can be inconvenient for the interior problems. The
second advantage is (in the author’s opinion) that there are problems which
require the potential to be expressed as a surface integral. For example, in
cases we have to adopt for some reason the approximate solution, such form
of potential assures that it is always a harmonic function (although with
only approximate boundary value). The ellipsoidal form of surface is only
an approximation of the surface of real planetary bodies and therefore the
solution of boundary problems for the rotational ellipsoid is in fact a first
approximation for the solution of these problems for general form of surface
(not very different from the ellipsoid). Therefore, our approach might be
helpful for the work in this direction.
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