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Abstract: We calculate the gravitational intensity and potential of a homogeneous body

with the shape of the rotational ellipsoid. The calculation is performed in ellipsoidal coor-

dinates and uses the properties of harmonic functions expressed as ellipsoidal harmonics.

The resulting formulae for the internal and external fields are expressed in ellipsoidal co-

ordinates and (in the case of external field) also in spherical coordinates. The results are

used in the calculation of the gravitational field of a layered body whose layer boundaries

are rotational ellipsoids with common centre and rotational axis; the density in each layer

is constant. The equilibrium of such a layered rotating body is examined: it is found that

there is no equilibrium for such a body except the case that the body is homogeneous

(thus proving once more the important, but rarely mentioned, fact).
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1. Introduction

The gravitational field of the homogeneous ellipsoidal body was calculated
many times in the past (for the history see Chandrasekhar, 1969). The
usual way is to calculate the gravitational potential by the volume integra-
tion over the interior of the body; the integration is performed mostly in
rectangular or spherical coordinate system, the use of ellipsoidal coordinates
is less common (for example, Moritz (1990), Chapter 5). We present here
quite a different approach for calculating the gravitational intensity and po-
tential generated by the homogeneous body with the shape of the rotational
ellipsoid. We first transform the volume integrals for intensity and potential
into a surface integrals over the surface of the body; then we calculate these
surface integrals using the expansion of the function 1/|r′ − r| into a series
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of ellipsoidal harmonics. Therefore, the derivation of the formulae for the
intensity and potential is (in our view) very short and simple; the rather
long explaining text in the following Sections is due to a thorough and math-
ematically correct description of the particular quantities and mathematical
operations. Moreover, we present our own proof of the basic formula for the
above mentioned expansion of the function 1/|r′ − r|.

Our approach differs from the others in several aspects: first of all, the
emphasis is on the intensity (the potential is treated as a secondary quan-
tity); it is interesting that the resulting formulae (and also their derivation)
are simpler for the intensity than for the potential. Second, our derivation
is performed entirely in ellipsoidal coordinates; these are denoted in such
a way that there can be no confusion with spherical coordinates (this may
seem absolutely natural, nevertheless, it is not the case in the common liter-
ature and the reader must be explicitly noticed to avoid such a confusion).
Third, we use (whenever possible) the vector notation – this is very rarely
used in geodetic literature. Fourth, we try to use the mathematically cor-
rect expressions and reasoning – this is a weak point of many papers and
even of textbooks: for example, there are usually omitted the conditions for
the existence of derivatives and integrals of particular functions, the condi-
tions for the expressibility of a particular function in the form of a series
(respectively, the existence of the sum of a particular series), the conditions
of the validity of particular theorems (like the Gauss theorem), the condi-
tions of the validity of the derivation steps, and so on. Especially grave is
the confusion of the Legendre functions Pmn (z) and Qmn (z) of the arbitary
complex argument z with the Legendre functions Pmn (u) and Qm

n (u) of the
real argument u (which is bounded by −1 ≤ u ≤ 1 for the function of the
first kind and by u > 1 for the function of the second kind). The (more)
correct approach makes the explaining text slightly longer, but the gain for
the reader (especially for the one who will conduct similar mathematical
calculations and derivations) is in our opinion much more important.

Last, but not least, the presented method can be generalized in several
ways (we mention here only the expression of gravitational field in form of
the integrals over the surface of the body) and thus it is very perspective
for the further investigations in this topics.
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2. Gravitational potential and intensity of a homogeneous
body

Let us consider a body whose boundary is a (sufficiently smooth) surface
S; the interior of the body will be denoted as D, while the exterior of the
body as Dext. Let the density of the matter in the body be the constant ρ;
then for any point r the gravitational potential of the body V (r) is

V (r) = −κρ
∫

D
dτ ′

1
|r′ − r| , (1)

where κ is the gravitational constant and dτ ′ is the volume element at the
point r′. The intensity of the gravitational field of the body E(r) (equal to
the acceleration generated by the gravitational field) is then

E(r) = −∇rV (r) = κρ

∫

D
dτ ′ ∇r

1
|r′ − r| = −κρ

∫

D
dτ ′ ∇r′

1
|r′ − r| , (2)

where ∇r is the gradient operator (with respect to the radius-vector r).
We now transform the expressions for the potential and intensity of the
gravitational field into surface integrals using the Gauss theorem: if f(r) is
a vector function with integrable gradient in domain D, then
∫

D
dτ ′ ∇r′ · f(r′) =

∫

S
dσ′ · f(s′) , (3)

where dσ′ is the surface element at the point s′ on the surface S oriented
outwards from the domain D. Accordingly, if f(r) is a scalar function with
integrable gradient in the domain D, then
∫

D
dτ ′ ∇r′f(r′) =

∫

S
dσ′ f(s′) . (4)

For the intensity we get from (2) according to (4)

E(r) = −κρ
∫

S
dσ′

1
|s′ − r| ; (5)

using the identity

∇r′ · r′ − r

|r′ − r| =
2

|r′ − r| (6)
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we obtain from (1) according to (3) for the potential the expression

V (r) = − 1
2
κρ

∫

S
dσ′ · s′ − r

|s′ − r| . (7)

We note that the formulae (5) and (7) are valid for any position of the
calculation point r with respect to the body.

3. Ellipsoidal coordinates

We now take into account that the body has the shape of the rotational
ellipsoid whose equatorial radius is a and whose excentricity is ε (where
0 ≤ ε < 1); the polar radius of the body is thus b = a

√
1− ε2. Therefore

it will be advantageous to use for the expression of the gravitational poten-
tial and intensity the ellipsoidal coordinates: we follow here the notation
and conventions introduced in author’s works Pohánka (1995) and Pohánka
(1999) (these will be cited shortly as P95 and P99); for the mathematical
background we shall refer mostly to Bateman and Erdélyi (1953) (or shortly
BE).

Let us first consider the rectangular coordinate system with the origin
in the centre of the body and the base vectors i, j, k, where the vector
k is parallel to the rotational axis of the body. The radius-vector r of an
arbitrary point which is expressed in the spherical coordinates r, ϑ, ϕ as

r = r
(

sinϑ (i cosϕ+ j sinϕ) + k cosϑ
)
, (8)

will be expressed in the ellipsoidal coordinates (coordinates of oblate spher-
oid) υ, ξ, ψ as

r = a
(√

(1− ε2)υ2 + ε2 sin ξ (i cosψ + j sinψ) + k
√

1− ε2 υ cos ξ
)
, (9)

where υ ≥ 0, 0 ≤ ξ ≤ π, 0 ≤ ψ < 2π (see BE, 16.1.3, Heiskanen and Moritz
(1967), Paragraph 1-19, P95, Section 6, P99, Section 1). These coordinates
are defined in such a way that the surface of the body S is given by the
condition υ = 1 and the interior (exterior) domain D (Dext) determined by
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the surface S is given by the condition 0 ≤ υ < 1 (υ > 1). The parametrical
expression of the radius-vector s of the point at the surface S is thus

s(ξ, ψ) = a
(

sin ξ (i cosψ + j sinψ) + k
√

1− ε2 cos ξ
)
. (10)

The transformation from the ellipsoidal to spherical coordinates is given by
the formulae

r = a
√

(1− ε2)υ2 + ε2 sin2ξ ,

ϑ = arccos
√

1− ε2 υ cos ξ√
(1− ε2)υ2 + ε2 sin2ξ

, ϕ = ψ ; (11)

for the inverse transformation we first introduce the radius of the focal circle
e and the Jacobi radial ellipsoidal coordinate s

e = aε, s = a
√

1− ε2 υ , (12)

and the function

s(r, e) =
√

1
2

(
r2 − e2 +

√
(r2 − e2)2 + 4e2 r2 cos2ϑ

)
, (13)

and then we have

s = s(r, e) , υ =
s

a
√

1− ε2
,

ξ = arccos
r cosϑ
s

, ψ = ϕ . (14)

The vector surface element of the surface S can be calculated by the formula
(see P95, Section 2)

dσ = η ∂ξs(ξ, ψ)× ∂ψs(ξ, ψ) dξdψ, (15)

where η (η2 = 1) is chosen so that the element has the required orientation.
According to (10) we get that η = 1 and

dσ = a2o(ξ, ψ) dΞ , (16)

where

o(ξ, ψ) =
√

1− ε2 sin ξ (i cosψ + j sinψ) + k cos ξ (17)
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and

dΞ = sin ξ dξdψ . (18)

We finally introduce the unit vector

v = sin ξ (i cosψ + j sinψ) + k cos ξ (19)

and from now on we can write any function f(ξ, ψ) briefly as f(v). The
unit vector n(s) of the external normal to the surface S at the point s is
then given by

n(s) = n(s(v)) =
o(v)
k(v)

, (20)

where

k(v) = |o(v)| =
√

1− ε2 sin2ξ . (21)

Following the conventions adopted in P95, Section 1, for any function
f(r) we denote as [f(s)]int ([f(s)]ext) the inner (outer) limit (with respect
to the domain D) of this function at the point s on the surface S. The
gradient of the function f(r) is in the ellipsoidal coordinates equal to

∇rf(r) = (∇rυ)∂υf(r) + (∇rξ)∂ξf(r) + (∇rψ)∂ψf(r); (22)

in order to calculate the quantities o(v)·[∇sf(s)]int and o(v)·[∇sf(s)]ext we
have to know the scalar products o(v)·[∇rυ]r=s, o(v)·[∇rξ]r=s, o(v)·[∇rψ]r=s.
Following P99, Section 1, we use the fact that ∇rr is the identity tensor
and we have

∇rr = ii + jj + kk = (∇rυ)∂υr + (∇rξ)∂ξr + (∇rψ)∂ψr . (23)

Using the expression (9) we can easily show that vectors ∂υr, ∂ξr, ∂ψr
are mutually orthogonal (this expresses the orthogonality of the ellipsoidal
coordinate system); thus we have

∂υr = (∇rυ) (∂υr)2, ∂ξr = (∇rξ) (∂ξr)2, ∂ψr = (∇rψ) (∂ψr)2 , (24)

and this implies that vectors ∇rυ, ∇rξ, ∇rψ are also mutually orthogonal.
From (9) and (17) we get

[∂υr]υ=1 = a
√

1− ε2o(v) (25)
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and from the first formula in (24) and (21) we obtain

[∇rυ]r=s =
o(v)

a
√

1− ε2 k(v)2
; (26)

the vectors [∇rξ]r=s and [∇rψ]r=s are orthogonal to the vector o(v). There-
fore we finally have

o(v) · [∇sf(s)]int =
1

a
√

1− ε2
limυ→1− ∂υf(r) , (27)

o(v) · [∇sf(s)]ext =
1

a
√

1− ε2
limυ→1+ ∂υf(r) . (28)

4. Harmonic functions in ellipsoidal coordinates

In order to express functions defined on the surface S we introduce the
spherical functions Yn,m(v): we follow here the definition presented in P95,
Section 3. These functions are defined on the surface of the (abstract)
unit sphere by the formula (for the connection between the vector v and
coordinates ξ, ψ see (19))

Yn,m(v) = Cn,m P|m|n (cos ξ) eimψ , (29)

where Pmn (u) is the associated Legendre function of real argument u, |u| ≤ 1
(for definition see BE, Chapter 3) and Cn,m is the normalization coefficient:
for |m| ≤ n it reads

Cn,m =

√
(2n+1)

(n−|m|)!
(n+|m|)! , (30)

otherwise Cn,m = 0. Spherical functions are complex (it holds true that
Y∗
n,m(v) = Yn,−m(v), where asterisk denotes the complex conjugation) and

they form an orthonormal system: for |m| ≤ n, |m′| ≤ n′ it holds true that

1
4π

∫
dΞ Y∗

n,m(v) Yn′,m′(v) = δn,n′ δm,m′ , (31)

where the angular element dΞ is given by (18).
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Spherical functions form a complete system of functions on the unit
sphere (note that vector v has unit length): any continuous function f(v)
can be expressed as a convergent series

f(v) =
∑

n≥0

∑
|m|≤n fn,m Yn,m(v) , (32)

where the coefficients fn,m are given by

fn,m =
1
4π

∫
dΞ f(v)Y∗

n,m(v); (33)

it is evident that for a real function f(v) it holds true that f∗n,m = fn,−m.
For the criterion of convergence of the series (32) in terms of coefficients
fn,m see P95, Section 3.

The adopted abbreviate notation of sums is the following:
∑
n≥k (

∑
n≤k)

is the summation over n (the first variable in the condition) from k to ∞
(from −∞ to k) and

∑
k≤n≤l is the summation over n (the middle variable

in the condition) from k to l if k ≤ l, and zero otherwise (
∑
|n|≤k is the

abbreviation of
∑
−k≤n≤k).

Now we can turn to the harmonic functions: as the Laplace equation
can be solved in ellipsoidal coordinates by separation of variables, harmonic
functions can be expressed as a series of ellipsoidal harmonics (see for ex-
ample Heiskanen and Moritz (1967), Paragraph 1-20, or Hobson (1931),
Paragraph 252). These series contain the associated Legendre functions
Pmn (z) and Qmn (z) for purely imaginary argument z = iu, u ≥ 0 (for defi-
nitions of these functions for arbitrary complex z see BE, Chapter 3). In
order to remove the imaginary argument we introduce here (following P99,
Section 3) the modified Legendre functions pmn (u) and qmn (u) defined by

Pmn (iu) = in pmn (u) , (34)

Qmn (iu) =
(−1)m

in+1
qmn (u) . (35)

We shall need only the functions p|m|n (u) and q|m|n (u), |m| ≤ n, u ≥ 0; they
can be expressed in the form of integrals (see BE, 3.7.14, 3.7.12)

p|m|n (u) =
(n+|m|)!

n!
1
2π

∫ π

−π
dt (u+

√
u2 + 1 cos t)n cosmt, (36)
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q|m|n (u) =
n!

(n−|m|)!
∫ ∞

0
dt

chmt
(u+

√
u2 + 1 ch t)n+1

. (37)

For the properties of these modified Legendre functions see P99, Section 3;
we note here only the fact that (for u ≥ 0) the function q|m|n (u) is always
positive and the function p|m|n (u) is positive with the exception of the case
that u = 0 and n−|m| is odd (then it is equal to zero). From the Wronskian
formula for the Legendre functions (see BE, 3.2.13, 1.2.15, P99, Section 5)
we get using (34) and (35) the formula

∂p|m|n (u) q|m|n (u)− p|m|n (u) ∂q|m|n (u) =
(n+|m|)!
(n−|m|)!

1
u2 + 1

, (38)

where we have denoted

∂pmn (u) = ∂upmn (u) , ∂qmn (u) = ∂uqmn (u) . (39)

Now we are able to express harmonic functions as a series of ellipsoidal
harmonics. We first define the quantity

κ(ε) =
√

1− ε2

ε
; (40)

then any function F (r) harmonic in the domain D can be expressed for
r∈D (thus 0 ≤ υ < 1) in the form

F (r) =
∑

n≥0

∑
|m|≤n Fn,m

p|m|n (κ(ε)υ)

p|m|n (κ(ε))
Yn,m(v) , (41)

and any function G(r) harmonic in the domain Dext and tending to zero
for |r| → ∞ can be expressed for r∈Dext (thus υ > 1) in the form

G(r) =
∑

n≥0

∑
|m|≤nGn,m

q|m|n (κ(ε)υ)

q|m|n (κ(ε))
Yn,m(v) (42)

(for the connection between vectors r, v and coordinates υ, ξ, ψ see (9) and
(19)). At the surface S we then have the limiting values

[F (s)]int =
∑

n≥0

∑
|m|≤n Fn,m Yn,m(v) , (43)
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[G(s)]ext =
∑

n≥0

∑
|m|≤nGn,m Yn,m(v); (44)

for the limiting values of the derivative with respect to υ we obtain

limυ→1− ∂υF (r) = κ(ε)
∑

n≥0

∑
|m|≤n Fn,m

∂p|m|n (κ(ε))

p|m|n (κ(ε))
Yn,m(v) , (45)

limυ→1+ ∂υG(r) = κ(ε)
∑

n≥0

∑
|m|≤nGn,m

∂q|m|n (κ(ε))

q|m|n (κ(ε))
Yn,m(v) . (46)

According to (27), (28) and (40) we then have

o(v) · [∇sF (s)]int =
1
aε

∑
n≥0

∑
|m|≤n Fn,m

∂p|m|n (κ(ε))

p|m|n (κ(ε))
Yn,m(v) , (47)

o(v) · [∇sG(s)]ext =
1
aε

∑
n≥0

∑
|m|≤nGn,m

∂q|m|n (κ(ε))

q|m|n (κ(ε))
Yn,m(v) . (48)

Now we write the third Green identity for the functions F (r) and G(r): for
any point r∈D we have
∫

S
dσ′ ·

(
[F (s′)]int

[
∇s′

1
|s′ − r|

]

int
− [∇s′F (s′)]int

1
|s′ − r|

)
=

= − 4π F (r) , (49)

and for any point r∈Dext we have
∫

S
dσ′ ·

(
[G(s′)]ext

[
∇s′

1
|s′ − r|

]

ext
− [∇s′G(s′)]ext

1
|s′ − r|

)
=

= 4πG(r) . (50)

The function 1/|r′ − r| is harmonic with respect to both variables r and r′

everywhere with the exception of the case r = r′. In order to express this
function as a series of ellipsoidal harmonics, we introduce for any υ0 > 0
the ellipsoidal surface S(υ0) defined by the condition υ = υ0; this surface is
the boundary of domains Dint(υ0) and Dext(υ0), defined by the conditions
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0 ≤ υ < υ0 and υ > υ0, respectively. Then it is evident that the function
1/|r′−r| is harmonic with respect to both variables r and r′ if one of them
is in the domain Dint(υ0) and the other one is in the domain Dext(υ0).

We first consider the case that 0 < υ0 < 1 and r∈Dint(υ0), r′∈Dext(υ0),
and we write the function 1/|r′ − r| as a series of ellipsoidal harmonics of
the variable r′ (note that this function is tending to zero for |r′| → ∞):

1
|r′ − r| =

∑
n′≥0

∑
|m′|≤n′ I

−
n′,m′(υ0, r) q|m

′|
n′ (κ(ε)υ′) Y∗

n′,m′(v
′) . (51)

As for any point s′ ∈ S it holds true that s′ ∈Dext(υ0), we can insert the
expression (51) in the formula (49); we choose the function F (r) in the form
p|m|n (κ(ε)υ) Yn,m(v) and using (16), (27), (40) and (47) we obtain

1
4π

∫
dΞ′ Yn,m(v′)

∑
n′≥0

∑
|m′|≤n′ I

−
n′,m′(υ0, r) ·

· a
ε

(
p|m|n (κ(ε)) ∂q|m

′|
n′ (κ(ε))− ∂p|m|n (κ(ε)) q|m

′|
n′ (κ(ε))

)
Y∗
n′,m′(v

′) =

= −p|m|n (κ(ε)υ) Yn,m(v) (52)

(here the dots at the end of the first line and at the beginning of the second
line do not denote the scalar product, but a simple multiplication; they
appear because the particular term is too long to be written in a single
line). According to (31) we get

I−n,m(υ0, r)
a

ε

(
p|m|n (κ(ε)) ∂q|m|n (κ(ε))− ∂p|m|n (κ(ε)) q|m|n (κ(ε))

)
=

= −p|m|n (κ(ε)υ) Yn,m(v) , (53)

and using (38) we obtain

I−n,m(υ0, r) =
1
aε

(n−|m|)!
(n+|m|)! p|m|n (κ(ε)υ) Yn,m(v); (54)

inserting in (51) we finally get the formula (valid for 0 ≤ υ < υ0 < υ′,
0 < υ0 < 1)

1
|r′ − r| =

1
aε

∑
n≥0

∑
|m|≤n

(n−|m|)!
(n+|m|)! q|m|n (κ(ε)υ′) p|m|n (κ(ε)υ) ·

·Y∗
n,m(v′) Yn,m(v) . (55)
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Now we consider the case that υ0 > 1 and r ∈Dext(υ0), r′ ∈Dint(υ0),
and we write the function 1/|r′ − r| as a series of ellipsoidal harmonics of
the variable r′:

1
|r′ − r| =

∑
n′≥0

∑
|m′|≤n′ I

+
n′,m′(υ0, r) p|m

′|
n′ (κ(ε)υ′) Y∗

n′,m′(v
′) . (56)

As for any point s′ ∈ S it holds true that s′ ∈Dint(υ0), we can insert the
expression (56) in the formula (50); we choose the function G(r) in the form
q|m|n (κ(ε)υ) Yn,m(v) and using (16), (28), (40) and (48) we obtain

1
4π

∫
dΞ′ Yn,m(v′)

∑
n′≥0

∑
|m′|≤n′ I

+
n′,m′(υ0, r) ·

· a
ε

(
q|m|n (κ(ε)) ∂p|m

′|
n′ (κ(ε))− ∂q|m|n (κ(ε)) p|m

′|
n′ (κ(ε))

)
Y∗
n′,m′(v

′) =

= q|m|n (κ(ε)υ) Yn,m(v) . (57)

According to (31) we get

I+
n,m(υ0, r)

a

ε

(
q|m|n (κ(ε)) ∂p|m|n (κ(ε))− ∂q|m|n (κ(ε)) p|m|n (κ(ε))

)
=

= q|m|n (κ(ε)υ) Yn,m(v) , (58)

and using (38) we obtain

I+
n,m(υ0, r) =

1
aε

(n−|m|)!
(n+|m|)! q|m|n (κ(ε)υ) Yn,m(v); (59)

inserting in (56) we finally get the formula (valid for 0 ≤ υ′ < υ0 < υ,
υ0 > 1)

1
|r′ − r| =

1
aε

∑
n≥0

∑
|m|≤n

(n−|m|)!
(n+|m|)! p|m|n (κ(ε)υ′) q|m|n (κ(ε)υ) ·

·Y∗
n,m(v′) Yn,m(v) . (60)

Note that the expressions on the r.h.s. of the formulae (55) and (60) do
not contain the parameter υ0; as the function 1/|r′ − r| is symmetric with
respect to variables r and r′, the formula (55) holds true for 0 ≤ υ < υ′ and
the formula (60) holds true for 0 ≤ υ′ < υ.
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We have thus proved the formula for the expansion of the function 1/|r′−
r| as a series of ellipsoidal harmonics presented and proved in Hobson (1931),
Paragraph 251 (it was used in P99, Section 5, without proof); we note that
our proof is different and much shorter. Using the formulae (31), (55) and
(60) we immediately obtain for r∈D (thus 0 ≤ υ < 1) the formula

1
4π

∫
dΞ′

Yn,m(v′)
|s(v′)− r| =

1
aε

(n−|m|)!
(n+|m|)! q|m|n (κ(ε)) p|m|n (κ(ε)υ) Yn,m(v) , (61)

and for r∈Dext (thus υ > 1) the formula

1
4π

∫
dΞ′

Yn,m(v′)
|s(v′)− r| =

1
aε

(n−|m|)!
(n+|m|)! p|m|n (κ(ε)) q|m|n (κ(ε)υ) Yn,m(v) . (62)

5. Expressions for the gravitational potential and intensity of
a homogeneous ellipsoidal body

We are now able to present the formulae for the gravitational potential and
intensity of a homogeneous ellipsoidal body: we shall need the formulae (5),
(7), (10), (16), (17), (61) and (62). The formula (5) now reads according to
(16)

E(r) = −κρa2
∫

dΞ′
o(v′)

|s(v′)− r| ; (63)

for the potential we first write using (5) and (7)

V (r) =
1
2

(
U(r)− r ·E(r)

)
, (64)

where

U(r) = −κρ
∫

S
dσ′ · s′

|s′ − r| , (65)

and according to (10), (16) and (17) we obtain

U(r) = −κρa2
∫

dΞ′
o(v′) · s(v′)
|s(v′)− r| =

= −κρa3
√

1− ε2
∫

dΞ′
1

|s(v′)− r| . (66)
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From the definition (29) we obtain that Y0,0(v) = 1, the quantity cos ξ
is a multiple of Y1,0(v) and the quantity sin ξ (i cosψ + j sinψ) is a linear
combination of Y1,−1(v) and Y1,1(v). Then we easily get from (61) for r∈D
the formulae

1
4π

∫
dΞ′

1
|s(v′)− r| =

1
aε

q0
0(κ(ε)) p0

0(κ(ε)υ) , (67)

1
4π

∫
dΞ′

cos ξ′

|s(v′)− r| =
1
aε

q0
1(κ(ε)) p0

1(κ(ε)υ) cos ξ , (68)

1
4π

∫
dΞ′

sin ξ′ (i cosψ′ + j sinψ′)
|s(v′)− r| =

=
1

2aε
q1

1(κ(ε)) p1
1(κ(ε)υ) sin ξ (i cosψ + j sinψ) , (69)

and from (62) for r∈Dext the formulae

1
4π

∫
dΞ′

1
|s(v′)− r| =

1
aε

p0
0(κ(ε)) q0

0(κ(ε)υ) , (70)

1
4π

∫
dΞ′

cos ξ′

|s(v′)− r| =
1
aε

p0
1(κ(ε)) q0

1(κ(ε)υ) cos ξ , (71)

1
4π

∫
dΞ′

sin ξ′ (i cosψ′ + j sinψ′)
|s(v′)− r| =

=
1

2aε
p1

1(κ(ε)) q1
1(κ(ε)υ) sin ξ (i cosψ + j sinψ) . (72)

According to (36) we have

p0
0(u) = 1 , (73)

p0
1(u) = u, p1

1(u) =
√
u2 + 1 , (74)

p0
2(u) =

1
2

(3u2 + 1) , (75)
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and from the formula (37) we obtain

q0
n(u) =

∫ ∞

0
dt

1
(u+

√
u2 + 1 ch t)n+1

, (76)

q1
n(u) = n

∫ ∞

0
dt

ch t
(u+

√
u2 + 1 ch t)n+1

. (77)

Taking the partial derivative of both sides of (76) (see (39)) and rearranging
the terms in numerator under the integral sign we easily obtain the formula

q0
n+1(u) = −u q0

n(u)−
u2 + 1
n+ 1

∂q0
n(u); (78)

rearranging the numerator under the integral sign in (77) and using (76) we
obtain the formula

q1
n(u) =

n√
u2 + 1

(
q0
n−1(u)− u q0

n(u)
)
. (79)

The expression for the function q0
0(u) can be easily obtained by calculating

the integral in (76) for n = 0

q0
0(u) =

i
2

ln
u− i
u+ i

= arctg
1
u
, (80)

(alternatively, one can use (35) and BE, 3.6.2, (20)) and thus

∂q0
0(u) = − 1

u2 + 1
. (81)

From (78), (79) and (81) we then get

q0
1(u) = 1− u q0

0(u) , (82)

q1
1(u) =

1√
u2 + 1

(
(u2 + 1) q0

0(u)− u
)
, (83)

q0
2(u) =

1
2

(
(3u2 + 1) q0

0(u)− 3u
)
. (84)

In order to express explicitly the asymptotic behaviour of these functions
for u→∞ we write them in the form

q0
0(u) =

1
u

r00(u) , (85)
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q0
1(u) =

1
3u2

r01(u) , q1
1(u) =

2
3u
√
u2 + 1

r11(u) , (86)

q0
2(u) =

2
15u3

r02(u) , (87)

and the functions r00(u), r01(u), r11(u) and r02(u) are given by the formulae

r00(u) = u arctg
1
u
, (88)

r01(u) = 3u2
(
1− r00(u)

)
, (89)

r11(u) =
3
2

(
(u2 + 1) r00(u)− u2

)
, (90)

r02(u) =
15u2

4

(
(3u2 + 1) r00(u)− 3u2

)
. (91)

We also note that there are the following relations between these functions:

r11(u) =
1
2

(
3 r00(u)− r01(u)

)
, (92)

r02(u) =
15u2

4

(
r00(u)− r01(u)

)
. (93)

Using the well known expansion of the arctangent function we can write the
functions r00(u), r01(u), r11(u) and r02(u) in the form of series:

r00(u) =
∑

k≥0

(−1)k

(2k+1)u2k
, (94)

r01(u) =
∑

k≥0

3 (−1)k

(2k+3)u2k
, (95)

r11(u) =
∑

k≥0

3 (−1)k

(2k+1)(2k+3)u2k
, (96)

r02(u) =
∑

k≥0

15 (−1)k (k+1)
(2k+3)(2k+5)u2k

, (97)
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which shows that the limit of all of these functions for u→∞ is equal to 1.
Now we can present the explicit formulae for the gravitational potential

and intensity: from (63) we obtain using (17), (68), (69), (71), (72), (74)
and (86) for r∈D

E(r) = − 4π
3
κρa

(
r11(κ(ε))

√
(1− ε2)υ2 + ε2 sin ξ (i cosψ + j sinψ) +

+k
1√

1− ε2
r01(κ(ε)) υ cos ξ

)
(98)

and for r∈Dext

E(r) = − 4π
3
κρa

1
υ2

(
υ√

(1− ε2)υ2 + ε2
r11(κ(ε)υ) ·

· sin ξ (i cosψ + j sinψ) + k
1√

1− ε2
r01(κ(ε)υ) cos ξ

)
. (99)

Similarly, from (66) we obtain using (67), (70), (73) and (85) for r∈D
U(r) = − 4πκρa2 r00(κ(ε)) (100)

and for r∈Dext

U(r) = − 4πκρa2 1
υ

r00(κ(ε)υ) . (101)

After introducing the mass of the body

M =
4π
3
ρ a3

√
1− ε2 , (102)

we obtain from (98) for r∈D

E(r) = − κM

a2 (1− ε2)

(√
1− ε2 r11(κ(ε))

√
(1− ε2)υ2 + ε2 ·

· sin ξ (i cosψ + j sinψ) + k r01(κ(ε)) υ cos ξ
)

(103)

and from (99) for r∈Dext

E(r) = − κM

a2 (1− ε2)υ2

( √
1− ε2 υ√

(1− ε2)υ2 + ε2
r11(κ(ε)υ) ·

· sin ξ (i cosψ + j sinψ) + k r01(κ(ε)υ) cos ξ
)
. (104)
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Similarly, we obtain from (100) for r∈D

U(r) = − 3κM
a
√

1− ε2
r00(κ(ε)) (105)

and from (101) for r∈Dext

U(r) = − 3κM
a
√

1− ε2 υ
r00(κ(ε)υ) . (106)

Now we can calculate the quantity r·E(r): using (9) we obtain from (103)
for r∈D

r ·E(r) = − κM

a
√

1− ε2

(
r11(κ(ε))

(
(1− ε2)υ2 + ε2

)
sin2ξ +

+r01(κ(ε)) υ
2 cos2ξ

)
(107)

and from (104) for r∈Dext

r ·E(r) = − κM

a
√

1− ε2 υ

(
r11(κ(ε)υ) sin2ξ + r01(κ(ε)υ) cos2ξ

)
. (108)

We rewrite these expressions using the well known definition of the Legendre
polynomial P2(cos ξ)

P2(cos ξ) =
1
2

(
3 cos2ξ − 1

)
; (109)

for the modification of the formula (107) we still introduce the function
B(r) (see P99, Section 2; this function was there denoted as E(r))

B(r) = 1− r2 − (k·r)2

a2
− (k·r)2

a2 (1− ε2)
, (110)

which can be expressed in ellipsoidal coordinates according to (9) as

B(r) = (1− υ2)
(
1− ε2 sin2ξ

)
(111)

(therefore we shall write this function also in the formB(υ, ξ)). The function
B(r) is biharmonic because

∆rB(r) = − 2 (3− 2ε2)
a2 (1− ε2)

(112)
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and it vanishes at the surface S

B(s) = 0 . (113)

Using the expressions (109) and (111) we can easily calculate that
(
(1− ε2)υ2 + ε2

)
sin2ξ =

2
3
− 2

3
3(1− ε2)υ2 + ε2

3− 2ε2
P2(cos ξ)−

− 2(1− ε2)
3− 2ε2

B(υ, ξ) , (114)

υ2 cos2ξ =
1
3

+
2
3

3(1− ε2)υ2 + ε2

3− 2ε2
P2(cos ξ)− 1

3− 2ε2
B(υ, ξ); (115)

note that according to (40) and (75) we have

3(1− ε2)υ2 + ε2

3− 2ε2
=

p0
2(κ(ε)υ)
p0

2(κ(ε))
, (116)

and thus according to (41), for both formulae (114) and (115), the first two
terms in the expression on the r.h.s. are harmonic inD, while the third term
is biharmonic. Inserting the expressions (114), (115) and (116) in (107) and
using the formulae (89), (92) and (93) we obtain for r∈D

r ·E(r) = − κM

a
√

1− ε2

(
r00(κ(ε))−

− 4ε2

15(1− ε2)
r02(κ(ε))

p0
2(κ(ε)υ)
p0

2(κ(ε))
P2(cos ξ)− 3(1− ε2)

3− 2ε2
B(υ, ξ)

)
; (117)

similarly, inserting the expressions (114), (115) for υ = 1 in (108) and using
the formulae (92) and (93) we obtain for r∈Dext

r ·E(r) = − κM

a
√

1− ε2 υ

(
r00(κ(ε)υ)−

− 4ε2

15(1− ε2)υ2
r02(κ(ε)υ) P2(cos ξ)

)
. (118)

The potential V (r) is then given by the formula (64): using (105) and (117)
we obtain for r∈D
V (r) = − κM

a
√

1− ε2

(
r00(κ(ε)) +

2ε2

15(1− ε2)
r02(κ(ε))

p0
2(κ(ε)υ)
p0

2(κ(ε))
P2(cos ξ) +

+
3(1− ε2)
2(3− 2ε2)

B(υ, ξ)
)

; (119)
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and using (106) and (118) we obtain for r∈Dext

V (r) = − κM

a
√

1− ε2 υ

(
r00(κ(ε)υ) +

+
2ε2

15(1− ε2)υ2
r02(κ(ε)υ) P2(cos ξ)

)
. (120)

We see that the potential V (r) is expressed in the domain D as a sum of
two harmonic terms and a biharmonic term: according to (102) and (112)
it satisfies there the Poisson equation

∆rV (r) = 4πκρ ; (121)

in the domain Dext the potential V (r) is expressed as a sum of two harmonic
terms (this follows from the formulae (42), (85) and (87)).

We present also the formulae for the gravitational potential and intensity
at the surface S: these are obtained by taking the limits of their correspond-
ing expressions in D and Dext to the surface S (of course, the interior and
exterior limits are identical). From (103) and (104) we obtain

E(s) = − κM

a2 (1− ε2)

(√
1− ε2 r11(κ(ε)) sin ξ (i cosψ + j sinψ) +

+k r01(κ(ε)) cos ξ
)
, (122)

while from (119) and (120) we obtain using (113)

V (s) = − κM

a
√

1− ε2

(
r00(κ(ε)) +

2ε2

15(1− ε2)
r02(κ(ε)) P2(cos ξ)

)
. (123)

Finally we express the gravitational potential and intensity outside the
body in spherical coordinates as a series of spherical harmonics. The poten-
tial V (r) and intensity E(r) are harmonic functions in domain Dext; taking
into account the symmetries of the potential we can express it in the form

V (r) =
∑

n≥0
Vn

a2n

r2n+1
P2n(cosϑ) , (124)

where Vn are unknown coefficients. Taking the gradient of the potential we
obtain after straightforward calculation

E(r) =
∑

n≥0
Vn

a2n

r2n+2

(
K1
n(cosϑ) sinϑ (i cosϕ+ j sinϕ) +

+kK0
n(cosϑ)

)
, (125)
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where

K1
n(cosϑ) = cosϑ ∂P2n(cosϑ) + (2n+1) P2n(cosϑ) , (126)

K0
n(cosϑ) = − sin2ϑ ∂P2n(cosϑ) + (2n+1) cosϑ P2n(cosϑ) , (127)

and

∂Pn(u) = ∂uPn(u) . (128)

Using the formulae for the Legendre polynomials (see BE, 3.8, (19))

sin2ϑ ∂P2n(cosϑ) = (2n+1)
(

cosϑ P2n(cosϑ)− P2n+1(cosϑ)
)
, (129)

sin2ϑ ∂P2n+1(cosϑ) = (2n+1)
(
P2n(cosϑ)− cosϑ P2n+1(cosϑ)

)
, (130)

we get

K1
n(cosϑ) = ∂P2n+1(cosϑ) , (131)

K0
n(cosϑ) = (2n+1) P2n+1(cosϑ) , (132)

and thus

E(r) =
∑

n≥0
Vn

a2n

r2n+2

(
∂P2n+1(cosϑ) sinϑ (i cosϕ+ j sinϕ) +

+k (2n+1) P2n+1(cosϑ)
)
. (133)

In order to find the relation between the expressions in ellipsoidal coor-
dinates (120), (104) and the corresponding expressions in spherical coordi-
nates (124), (133), we use the well known procedure (see for example Heiska-
nen and Moritz (1967), Paragraph 2-9): we compare both expressions at the
positive z-axis. According to (8) and (9) we have there cosϑ = 1, cos ξ = 1
and r = a

√
1− ε2 υ. Using the equality Pn(1) = 1 and (40) we get from

(120) and (104) the formulae

V (rk) = − κM

r

(
r00

( r
aε

)
+

2a2ε2

15 r2
r02

( r
aε

))
, (134)

E(rk) = − κM

r2
k r01

( r
aε

)
, (135)
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and using the formulae (94), (95) and (97) we obtain

V (rk) = − κM

r

∑
n≥0

3 (−1)na2nε2n

(2n+1)(2n+3) r2n
, (136)

E(rk) = − κM

r2
k

∑
n≥0

3 (−1)na2nε2n

(2n+3) r2n
. (137)

On the other hand, from (124) and (133) we have

V (rk) =
∑

n≥0
Vn

a2n

r2n+1
, (138)

E(rk) = k
∑

n≥0
(2n+1)Vn

a2n

r2n+2
, (139)

and comparing with (136) and (137) we obtain the values of the coefficients
Vn:

Vn = −κM 3 (−1)nε2n

(2n+1)(2n+3)
. (140)

The formulae for the gravitational potential and intensity outside the body
in spherical coordinates then read

V (r) = − κM

r

∑
n≥0

3 (−1)nε2n

(2n+1)(2n+3)
a2n

r2n
P2n(cosϑ) , (141)

E(r) = − κM

r2

∑
n≥0

3 (−1)nε2n

(2n+1)(2n+3)
a2n

r2n
·

·
(
∂P2n+1(cosϑ) sinϑ (i cosϕ+ j sinϕ) +

+k (2n+1) P2n+1(cosϑ)
)
. (142)
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6. Equilibrium state of a rotating homogeneous ellipsoidal
body

Let us consider the case that the homogeneous ellipsoidal body is rotating
about the z-axis with the angular velocity ω. Then any mass point fixed
with respect to the body at the point r is subject (in the frame rotating
with the body) to the centrifugal acceleration given by the formula

C(r) = −ω2 k× (k× r) , (143)

and thus the total acceleration of the mass point is

G(r) = E(r) + C(r) . (144)

In analogy with the connection between the gravitational potential V (r) and
the intensity E(r) (see (2)) we can introduce the (quasi)potentialW (r) such
that

G(r) = −∇rW (r) , (145)

and then we get

W (r) = V (r) + Z(r) , (146)

where Z(r) is the centrifugal potential:

Z(r) = − 1
2
ω2 (k× r)2 . (147)

Using the formula (9) we obtain the expressions for the centrifugal acceler-
ation C(r) and potential Z(r) in ellipsoidal coordinates:

C(r) = ω2a
√

(1− ε2)υ2 + ε2 sin ξ (i cosψ + j sinψ) , (148)

Z(r) = − 1
2
ω2a2

(
(1− ε2)υ2 + ε2

)
sin2ξ . (149)

The rotating ellipsoidal body is in equilibrium if the total acceleration at
the surface of the body G(s) has no component tangential to the surface; in
other words, if it is proportional to the normal vector of the surface n(s).
Thus in equilibrium we have

G(s) = G(s)n(s) , (150)
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where G(s) is the normal component of the total acceleration. Using the
formulae (17), (20), (21), (122), (144) and (148) we obtain the condition

− κM

a2 (1− ε2)

(√
1− ε2 r11(κ(ε)) sin ξ (i cosψ + j sinψ) + k r01(κ(ε)) cos ξ

)
+

+ ω2a sin ξ (i cosψ + j sinψ) =

=
G(s)
k(v)

(√
1− ε2 sin ξ (i cosψ + j sinψ) + k cos ξ

)
, (151)

from which we easily get according to (40), (92) and (93) the formulae

G(s) = − κM

a2 (1− ε2)
r01(κ(ε))

√
1− ε2 sin2ξ , (152)

ω2 =
κM

a3
√

1− ε2
2ε2

5(1− ε2)
r02(κ(ε)) . (153)

The total acceleration at the surface S is then given by the formula

G(s) = − κM

a2 (1− ε2)
r01(κ(ε))

(√
1− ε2 sin ξ (i cosψ + j sinψ) +

+k cos ξ
)

; (154)

for the centrifugal potential at the surface we get from (149) and (153)

Z(s) = − κM

a
√

1− ε2
2ε2

15(1− ε2)
r02(κ(ε))

(
1− P2(cos ξ)

)
, (155)

and for the total potential at the surface we obtain according to (123) and
(146)

W (s) = − κM

a
√

1− ε2

(
r00(κ(ε)) +

2ε2

15(1− ε2)
r02(κ(ε))

)
. (156)

We see that the total potential at the surface S is constant as expected in
equilibrium.

Now we compare the field of the homogeneous ellipsoidal body in equi-
librium with the so-called normal gravity field which is defined as follows
(see Heiskanen and Moritz (1967), Paragraph 2-7):
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– the normal gravitational potential VN(r) is defined in the exterior of
the ellipsoidal body Dext and on its surface S,

– the potential VN(r) is harmonic in Dext and the limit of the quantity
r VN(r) for r →∞ is equal to −κM ,

– the normal gravity potential WN(r) = VN(r) + Z(r) for the given
angular velocity ω is constant at the surface S.

Comparing the formulae (123) and (156) and taking into account the for-
mula (153) we immediately obtain

VN(s) = − κM

a
√

1− ε2
r00(κ(ε))−

1
3
ω2a2P2(cos ξ) , (157)

WN(s) = − κM

a
√

1− ε2
r00(κ(ε))−

1
3
ω2a2 , (158)

and thus according to (42), (85) and (87) we get for r ∈ Dext

VN(r) = − κM

a
√

1− ε2 υ
r00(κ(ε)υ)−

1
3
ω2a2 1

υ3

r02(κ(ε)υ)
r02(κ(ε))

P2(cos ξ) . (159)

We see that for the angular velocity ω given by (153) the expressions for
the potentials V (r) (120) and VN(r) (159) coincide.

The main problem with the normal gravity field is that it assumes that
the body has the shape of the rotational ellipsoid and that it is (at the
surface) in equilibrium, but it does not bother about the source of the
gravitational field – the density distribution in the interior of the body.
There arises a question as to what can be the possible density distribution
within the body which generates the adopted external gravitational field;
we shall touch this point in the next Section.

7. Gravitational field of a layered ellipsoidal body

We shall define the layered ellipsoidal body as a set of homogeneous bodies
with the shape of the rotational ellipsoid such that all bodies have the
common centre and rotational axis. Let the number of the bodies be I+1,
where I ≥ 0; then for any i such that 0 ≤ i ≤ I, let Si be the surface of
the i-th body and Di its interior. We define the set of bodies in such a way
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that the (i+1)-th body is fully contained within the interior of the i-th body
(thus Di+1 ⊂ Di); then the i-th layer is defined as the set of points r lying
in the interior of the i-th body but in the exterior of the (i+1)-th body (thus
r ∈ Di, r /∈ Di+1 ∪ Si+1). Further, let the i-th body have the equatorial
radius ai, excentricity εi and density σi; according to the previous sentence,
the dimension parameters have to satisfy for each i (0 ≤ i ≤ I−1) the
inequalities

ai+1 < ai , ai+1

√
1− ε2i+1 < ai

√
1− ε2i . (160)

Our definition of the layered ellipsoidal body means that the actual density
of the body ρ(r) at the point r lying in the i-th layer is equal to

ρ(r) =
∑

0≤k≤i σk . (161)

Finally, we shall require that the density ρ(r) increases if we cross any
surface Si towards the centre; this means that for each i (0 ≤ i ≤ I) we
have σi > 0.

As we do not restrict the values of the parameters ai and εi besides
the conditions (160), it is not useful to use the ellipsoidal coordinates for
the expression of the gravitational potential and intensity of the particular
bodies. The reason is that the ellipsoidal surface with equatorial radius ai
and excentricity εi is in the ellipsoidal coordinates a surface given by the
constant value of the radial coordinate υ only if aiεi = aε. Therefore we
transform our expressions from Section 5 into the spherical coordinates using
the formulae (14) and we replace the parameters a and ε by the parameters
b and e according to the definition (12). Then we obtain the replacements

a =
√
b2 + e2 , a

√
1− ε2 = b, a

√
1− ε2 υ = s(r, e) , (162)

(where s(r, e) is given by (13)) and comparing the formulae (8) and (9) we
obtain the replacements

a
√

(1− ε2)υ2 + ε2 sin ξ = r sinϑ, (163)

a
√

1− ε2 υ cos ξ = r cosϑ . (164)
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For the intensity we get after straightforward calculation (using (40)) from
(103) the formula valid for s(r, e) < b

E(r) = − κM

b2

(
r11

(b
e

) b r sinϑ
b2 + e2

(i cosϕ+ j sinϕ) +

+k r01
(b
e

) r cosϑ
b

)
, (165)

and from (104) the formula valid for s(r, e) ≥ b

E(r) = − κM

s(r, e)2

(
r11

(s(r, e)
e

) s(r, e) r sinϑ
s(r, e)2 + e2

(i cosϕ+ j sinϕ) +

+k r01
(s(r, e)

e

) r cosϑ
s(r, e)

)
. (166)

For the potential we get according to (64) from (105) and (107) the formula
valid for s(r, e) < b

V (r) = − κM

b

1
2

(
3 r00

(b
e

)
− r11

(b
e

) r2 sin2ϑ

b2 + e2
− r01

(b
e

) r2 cos2ϑ
b2

)
, (167)

and from (106) and (108) the formula valid for s(r, e) ≥ b

V (r) = − κM

s(r, e)
1
2

(
3 r00

(s(r, e)
e

)
− r11

(s(r, e)
e

) r2 sin2ϑ

s(r, e)2 + e2
−

− r01
(s(r, e)

e

) r2 cos2ϑ
s(r, e)2

)
. (168)

The mass M is given according to (102) by

M =
4π
3
ρ (b2 + e2) b . (169)

Comparing the formulae for the intensity and potential in the interior and
exterior of the body we see that we can write them in a unified form: after
introducing the function s(r, b, e)

s(r, e) < b : s(r, b, e) = b,

s(r, e) ≥ b : s(r, b, e) = s(r, e) , (170)
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we write the intensity as E(r,M, b, e) and we obtain from (165) and (166)
the expression

E(r,M, b, e) = − κM

s(r, b, e)2
·

·
(

r11
(s(r, b, e)

e

) s(r, b, e) r sinϑ
s(r, b, e)2 + e2

(i cosϕ+ j sinϕ) +

+k r01
(s(r, b, e)

e

) r cosϑ
s(r, b, e)

)
; (171)

similarly, we write the potential as V (r,M, b, e) and we obtain from (167)
and (168) the expression

V (r,M, b, e) = − κM

s(r, b, e)
·

· 1
2

(
3 r00

(s(r, b, e)
e

)
− r11

(s(r, b, e)
e

) r2 sin2ϑ

s(r, b, e)2 + e2
−

− r01
(s(r, b, e)

e

) r2 cos2ϑ
s(r, b, e)2

)
, (172)

where the mass M is given by (169).
Now we can express the gravitational field of the layered ellipsoidal body

in a simple form: for the intensity we have

E(r) =
∑

0≤i≤I E(r,Mi, bi, ei) , (173)

and for the potential

V (r) =
∑

0≤i≤I V (r,Mi, bi, ei) ; (174)

the total mass of the layered ellipsoidal body is given by

M =
∑

0≤i≤IMi , (175)

where according to (169)

Mi =
4π
3
σi (b2i + e2i ) bi . (176)

After obtaining the expression for the gravitational field of the layered
ellipsoidal body we can turn to the problem of the equilibrium state of
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such a body; we assume that the body rotates as a whole with the angular
velocity ω. The total potential W (r) is given by (146), where the gravita-
tional potential V (r) is given by (174) and the centrifugal potential Z(r) is
according to (147) equal to

Z(r) = − 1
2
ω2 r2 sin2ϑ . (177)

On the contrary to the homogeneous body we have to satisfy the equilibrium
conditions at each boundary surface Si. In order to formulate the condition
for some particular i (0 ≤ i ≤ I), we introduce the auxiliary ellipsoidal
coordinate system with coordinates sa, ξa, ψa in which the radius-vector r
can be expressed according to (9) and (12) as

r =
√
s2a + e2i sin ξa (i cosψa + j sinψa) + k sa cos ξa ; (178)

note that the coordinate system is different for different values of i (we
avoided the index i in the coordinates, as such notation could be misin-
terpreted as a particular constant value of the corresponding coordinate).
The parametric expression of the radius-vector si(ξa, ψa) of a point at the
boundary surface Si can be obtained by replacing sa by bi:

si(ξa, ψa) =
√
b2i + e2i sin ξa (i cosψa + j sinψa) + k bi cos ξa . (179)

In order to calculate the potentials V (r) and Z(r) according to (172), (174)
and (177), we still have to know the values of quantities r2 sin2ϑ and r2 cos2ϑ
at the surface Si: we evidently have

r2 sin2ϑ = (b2i + e2i ) sin2ξa , (180)

r2 cos2ϑ = b2i cos2ξa . (181)

Inserting the expression (179) for r in the formulae (174) and (177) and using
(180) and (181) we obtain from (146) the equilibrium condition (0 ≤ i ≤ I)
∑

0≤k≤I V (si(ξa, ψa),Mk, bk, ek) + Z(si(ξa, ψa)) = Wi , (182)

where Wi is the unknown constant. As the values of parameters ek for
k 6= i are in general different from ei, the equilibrium condition is very
complicated and it is unlikely that the l.h.s. of (182) can be expressed as a
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series of some base functions of ξa (for example the Legendre polynomials
Pn(cos ξa)) whose coefficients have a manageable form.

The solution of this problem may be found in the following way: both
sides of the condition (182) are functions defined at the surface Si; instead
of these we shall compare the functions harmonic in the exterior of the i-th
body whose values at the surface Si are the l.h.s. and the r.h.s. of (182)
(more exactly, we shall compare the values of these functions at the positive
z-axis). The construction of these harmonic functions is straightforward.

The sum on the l.h.s. of (182) can be divided into two sums, the first one
for 0 ≤ k ≤ i−1 and the second one for i ≤ k ≤ I. The second sum represents
the contribution of the i-th body and of bodies which are contained in the
interior of the i-th body; therefore the contribution of each of these bodies
has the form of the external potential (note that for i ≤ k ≤ I we have
s(si(ξa, ψa), ek) ≥ bk and according to (170) the potential (172) has the
form (168)).

On the contrary, the first sum represents the contribution of bodies whose
interior contains the i-th body; therefore the contribution of each of these
bodies has the form of the internal potential (as for 0 ≤ k ≤ i− 1 we
have s(si(ξa, ψa), ek) < bk and according to (170) the potential (172) has
the form (167)). The contribution of each of these bodies (and also of the
centrifugal potential (177) and of the constant Wi) is a linear combination
of 1 and quantities r2 sin2ϑ and r2 cos2ϑ at the surface Si (the latter are
given by (180) and (181)). Therefore we introduce the functions h0(r, bi, ei),
h1(r, bi, ei) and h2(r, bi, ei) which are harmonic for s(r, ei) ≥ bi and which
satisfy at the surface Si (thus for s(r, ei) = bi) the conditions

h0(si(ξa, ψa), bi, ei) = 1 , (183)

h1(si(ξa, ψa), bi, ei) = (b2i + e2i ) sin2ξa =
2
3

(b2i + e2i )
(
1− P2(cos ξa)

)
, (184)

h2(si(ξa, ψa), bi, ei) = b2i cos2ξa =
1
3
b2i

(
1 + 2P2(cos ξa)

)
, (185)

where we used the formula (109). Taking into account the formulae (42),
(44), (85), (87), (162) and (178) we can directly write

h0(r, bi, ei) =
bi

s(r, ei)
r00

(bi
ei

)
r00

(s(r, ei)
ei

)
, (186)
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h1(r, bi, ei) =
2
3

(b2i + e2i ) bi
s(r, ei)

(
r00

(bi
ei

)
r00

(s(r, ei)
ei

)
−

− b2i
s(r, ei)2

r02
(bi
ei

)
r02

(s(r, ei)
ei

)
P2(cos ξa)

)
, (187)

h2(r, bi, ei) =
1
3

b3i
s(r, ei)

(
r00

(bi
ei

)
r00

(s(r, ei)
ei

)
+

+ 2
b2i

s(r, ei)2
r02

(bi
ei

)
r02

(s(r, ei)
ei

)
P2(cos ξa)

)
, (188)

where we introduced for brevity

r00(u) =
1

r00(u)
, r02(u) =

1
r02(u)

. (189)

Now we replace on the r.h.s. of the formula (167) the terms 1, r2 sin2ϑ,
r2 cos2ϑ by the functions h0(r, bi, ei), h1(r, bi, ei), h2(r, bi, ei), respectively;
the function V (r,M, b, e, bi, ei) obtained in this way is harmonic for s(r, ei) ≥
bi:

V (r,M, b, e, bi, ei) = − κM

b

1
2

(
3 r00

(b
e

)
h0(r, bi, ei)−

− r11
(b
e

) h1(r, bi, ei)
b2 + e2

− r01
(b
e

) h2(r, bi, ei)
b2

)
. (190)

According to (170), (172), (180), (181), (183), (184) and (185), this function
satisfies at the surface Si for any k such that 0 ≤ k ≤ i−1 the equality

V (si(ξa, ψa),Mk, bk, ek, bi, ei) = V (si(ξa, ψa),Mk, bk, ek) . (191)

Similarly, using the formulae (177), (180), (183) and (184) we define the
following functions harmonic for s(r, ei) ≥ bi:

Z(r, bi, ei) = − 1
2
ω2 h1(r, bi, ei) , (192)

Wi(r, bi, ei) = Wi h0(r, bi, ei) , (193)

which evidently satisfy at the surface Si the equalities

Z(si(ξa, ψa), bi, ei) = Z(si(ξa, ψa)) , (194)
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Wi(si(ξa, ψa), bi, ei) = Wi . (195)

We are now ready to rewrite the condition (182) using the formulae (191),
(194) and (195) (0 ≤ i ≤ I):
∑

0≤k≤i−1
V (si(ξa, ψa),Mk, bk, ek, bi, ei) +

+
∑

i≤k≤I V (si(ξa, ψa),Mk, bk, ek) +

+Z(si(ξa, ψa), bi, ei) = Wi(si(ξa, ψa), bi, ei) ; (196)

as each term is a harmonic function for s(r, ei) ≥ bi, we get the equation
(valid for s(r, ei) ≥ bi)
∑

0≤k≤i−1
V (r,Mk, bk, ek, bi, ei) +

∑
i≤k≤I V (r,Mk, bk, ek) +

+Z(r, bi, ei) = Wi(r, bi, ei) . (197)

In particular, we obtain at the positive z-axis the equation (valid for r ≥ bi,
0 ≤ i ≤ I)
∑

0≤k≤i−1
V (rk,Mk, bk, ek, bi, ei) +

∑
i≤k≤I V (rk,Mk, bk, ek) +

+Z(rk, bi, ei) = Wi(rk, bi, ei) . (198)

According to (13) we have s(rk, e) = r; using (92) we obtain from (170)
and (172) for r ≥ bk

V (rk,Mk, bk, ek) = − κMk

r
r11

( r
ek

)
. (199)

In a similar way we obtain from (186), (187) and (188) for r ≥ bi

h0(rk, bi, ei) =
bi
r

r00
(bi
ei

)
r00

( r
ei

)
, (200)

h1(rk, bi, ei) =
2
3

(b2i + e2i ) bi
r

(
r00

(bi
ei

)
r00

( r
ei

)
− b2i
r2

r02
(bi
ei

)
r02

( r
ei

))
, (201)

h2(rk, bi, ei) =
1
3
b3i
r

(
r00

(bi
ei

)
r00

( r
ei

)
+ 2

b2i
r2

r02
(bi
ei

)
r02

( r
ei

))
, (202)
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and inserting in (190), (192) and (193) we get

V (rk,Mk, bk, ek, bi, ei) = − κMk

r

1
2
bi
bk

(
3 r00

(bk
ek

)
r00

(bi
ei

)
r00

( r
ei

)
−

− 2
3
b2i + e2i
b2k + e2k

r11
(bk
ek

)(
r00

(bi
ei

)
r00

( r
ei

)
− b2i
r2

r02
(bi
ei

)
r02

( r
ei

))
−

− 1
3
b2i
b2k

r01
(bk
ek

)(
r00

(bi
ei

)
r00

( r
ei

)
+ 2

b2i
r2

r02
(bi
ei

)
r02

( r
ei

)))
, (203)

Z(rk, bi, ei) = − 1
3
ω2 (b2i + e2i ) bi

r

(
r00

(bi
ei

)
r00

( r
ei

)
−

− b2i
r2

r02
(bi
ei

)
r02

( r
ei

))
, (204)

Wi(rk, bi, ei) = Wi
bi
r

r00
(bi
ei

)
r00

( r
ei

)
. (205)

The condition (198) acquires the form (0 ≤ i ≤ I)

∑
0≤k≤i−1

κMk
1
2
bi
bk

(
3 r00

(bk
ek

)
r00

(bi
ei

)
r00

( r
ei

)
−

− 2
3
b2i + e2i
b2k + e2k

r11
(bk
ek

)(
r00

(bi
ei

)
r00

( r
ei

)
− b2i
r2

r02
(bi
ei

)
r02

( r
ei

))
−

− 1
3
b2i
b2k

r01
(bk
ek

)(
r00

(bi
ei

)
r00

( r
ei

)
+ 2

b2i
r2

r02
(bi
ei

)
r02

( r
ei

)))
+

+
∑

i≤k≤I κMk r11
( r
ek

)
+

+
1
3
ω2 (b2i + e2i ) bi

(
r00

(bi
ei

)
r00

( r
ei

)
− b2i
r2

r02
(bi
ei

)
r02

( r
ei

))
+

+Wi bi r00
(bi
ei

)
r00

( r
ei

)
= 0 , (206)

and inserting the series (94), (96) and (97) we get the set of conditions (for
n ≥ 0, 0 ≤ i ≤ I)

(2n+ 3)
(
Ai −Bi − Ci +Oi +Wi bi

)
r00

(bi
ei

)
e2ni +
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+15n
(
−Bi + 2Ci +Oi

)
r02

(bi
ei

)
e2n−2
i b2i +

+
∑

i≤k≤I 3κMk e
2n
k = 0 , (207)

where we denoted

Ai =
∑

0≤k≤i−1
κMk

3
2
bi
bk

r00
(bk
ek

)
, (208)

Bi =
∑

0≤k≤i−1
κMk

1
3

(b2i + e2i ) bi
(b2k + e2k) bk

r11
(bk
ek

)
, (209)

Ci =
∑

0≤k≤i−1
κMk

1
6
b3i
b3k

r01
(bk
ek

)
, (210)

Oi =
1
3
ω2 (b2i + e2i ) bi . (211)

Inserting n = 0 in (207) we obtain the equation
(
Ai −Bi − Ci +Oi +Wi bi

)
r00

(bi
ei

)
+

∑
i≤k≤I κMk = 0 ; (212)

if we denote

Ni =
∑

i≤k≤I κMk , (213)

and use (189), we get the expression for the constant Wi (0 ≤ i ≤ I)

Wi = − 1
bi

(
Ai −Bi − Ci +Oi +Ni r00

(bi
ei

))
(214)

and the set of equations (207) acquires the form (n ≥ 1, 0 ≤ i ≤ I)

− (2n+ 3)Ni e
2n
i + 15n

(
−Bi + 2Ci +Oi

)
r02

(bi
ei

)
e2n−2
i b2i +

+
∑

i≤k≤I 3κMk e
2n
k = 0 . (215)

Now we put n = 1 and obtain the equation

− 5Ni e
2
i + 15

(
−Bi + 2Ci +Oi

)
r02

(bi
ei

)
b2i +

+
∑

i≤k≤I 3κMk e
2
k = 0 ; (216)
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if we denote

Ei =
∑

i≤k≤I κMk e
2
k , (217)

and use (189), we get the expression for the quantity Oi given by (211)
(0 ≤ i ≤ I)

Oi =
5Ni e

2
i − 3Ei

15 b2i
r02

(bi
ei

)
+Bi − 2Ci (218)

and the set of equations (215) acquires the form (n ≥ 2, 0 ≤ i ≤ I)

(n− 1)Ni e
2n
i − nEi e

2n−2
i +

∑
i≤k≤I κMk e

2n
k = 0 . (219)

We finally put n = 2 and obtain the equation

Ni e
4
i − 2Ei e2i +

∑
i≤k≤I κMk e

4
k = 0 , (220)

which can be according to (213) and (217) written in the form
∑

i≤k≤I κMk

(
e2k − e2i

)2
= 0 , (221)

and this has the consequence (0 ≤ i ≤ I)

i+1 ≤ k ≤ I : ek = ei , (222)

as for all i (0 ≤ i ≤ I) we have Mi > 0 (this follows from (176) and our
assumption σi > 0). If (222) holds true, we obtain from (213) and (217)

Ei = Ni e
2
i , (223)

and the condition (219) is satisfied for any n ≥ 2. Thus, instead of the
whole set of equations (215) (n ≥ 1, 0 ≤ i ≤ I) there remains the single
equation (218) (0 ≤ i ≤ I), which acquires the form

Oi =
2e2i
15 b2i

r02
(bi
ei

)
Ni +Bi − 2Ci . (224)

Further, if the equalities (222) hold true for i = 0, they hold true for all i
(0 ≤ i ≤ I); thus all parameters ei are mutually equal and we can put

0 ≤ i ≤ I : ei = e . (225)
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In other words, if there is an equilibrium for the rotating layered ellipsoidal
body, then all boundaries Si have to be rotational ellipsoids with the com-
mon focal circle. This is a rather unexpected result.

Of course, we still have to satisfy condition (224) for all 0 ≤ i ≤ I; we
rewrite it using the formulae (209), (210), (211) and (213) as (0 ≤ i ≤ I)

ω2 (b2i + e2) bi =
2e2

5b2i
r02

(bi
e

) ∑
i≤k≤I κMk +

+
∑

0≤k≤i−1
κMk

bi
bk

(
b2i + e2

b2k + e2
r11

(bk
e

)
− b2i
b2k

r01
(bk
e

))
. (226)

For i = 0 we get using (175) the formula

ω2 =
κM

(b20 + e2)b0
2e2

5b20
r02

(b0
e

)
, (227)

which is according to (162) for b0 = b identical with (153). For 1 ≤ i ≤ I
we first derive from (92) and (93) the formula

r11(u) = r01(u) +
2

5u2
r02(u) , (228)

and inserting in (226) we obtain

ω2 =
1

b2i + e2
2e2

5b3i
r02

(bi
e

) ∑
i≤k≤I κMk +

+
∑

0≤k≤i−1
κMk

1
b2k + e2

2e2

5b3k
r02

(bk
e

)
+

+
1

b2i + e2

∑
0≤k≤i−1

κMk
b2k − b2i
b2k + e2

e2

b3k
r01

(bk
e

)
. (229)

Now we use the fact that the function q0
2(u) is according to (76) decreasing

function of u (see also P99, Section 3); thus according to (87) the same
is true for the function r02(u)/u

3. Further, as functions q0
1(u) and q0

2(u)
are always positive, according to (86) and (87) the same is true for u > 0
for the functions r01(u) and r02(u). From (160) and (162) we get for each i
(0 ≤ i ≤ I−1) the inequality bi+1 < bi; the inequality Mi > 0 for all i
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(0 ≤ i ≤ I) was mentioned above. Therefore we can write for 1 ≤ i ≤ I the
inequality

1
b2i + e2

2e2

5b3i
r02

(bi
e

) ∑
i≤k≤I κMk >

>
1

b20 + e2
2e2

5b30
r02

(b0
e

) ∑
i≤k≤I κMk (230)

(as bi < b0) and the inequality

∑
0≤k≤i−1

κMk
1

b2k + e2
2e2

5b3k
r02

(bk
e

)
≥

≥
∑

0≤k≤i−1
κMk

1
b20 + e2

2e2

5b30
r02

(b0
e

)
(231)

(as bk ≤ b0 for 0 ≤ k ≤ i− 1). Then we obtain from (229) using (175) and
(227) for 1 ≤ i ≤ I the chain of inequalities

ω2 >
1

b2i + e2
2e2

5b3i
r02

(bi
e

) ∑
i≤k≤I κMk +

+
∑

0≤k≤i−1
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)
= ω2 , (232)

that is impossible to satisfy. Thus, if there is an equilibrium for the rotating
layered ellipsoidal body, then the body consists of the single layer (I = 0);
in other words, it is a homogeneous ellipsoidal body.

This is an even more unexpected result, as the layered ellipsoidal body
whose layer boundaries are confocal rotational ellipsoids is considered as
a natural generalization of the layered spherical body (with homogeneous
layers): in both cases the external gravitational field does not depend on
the parameters of layers, but only on the total mass of the body (and on
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the excentricity of the surface of the body). Thus, if we wanted to create
a model of the body generating the given external gravitational field (and
ignoring the equilibrium), we could introduce as many layers with confocal
ellipsoidal boundaries as desired; now we see that the requirement of an
equilibrium makes such a model impossible.

Concerning the normal gravity field, we can say the following: even if we
ignore the equilibrium conditions at the internal boundaries (at surfaces Si
for 1 ≤ i ≤ I), there remain the two conditions at the surface of the body
– (218) and (221) for i = 0. These conditions imply the formulae (225)
and (227), and therefore there is a single possible value of angular velocity
ω. Thus, there is no layered ellipsoidal body whose layer boundaries are
rotational ellipsoids with common centre and rotation axis and whose layer
density increases towards the centre, and such that the external gravita-
tional field generated by this body is the normal gravitational field for the
value of angular velocity ω different from those given by (227).

8. Discussion

It is evident that the results of the previous Section can be generalized to
the case of infinitely many ellipsoidal layers and also for certain smooth
density distributions. To be exact, consider the body composed of I+1
layers (I ≥ 0) as follows: for each i (0 ≤ i ≤ I) let Di be a domain whose
boundary is a smooth, closed and simply connected surface Si; the domains
Di have to satisfy the condition Di+1 ⊂ Di for each 0 ≤ i < I. Then
the i-th layer is a domain defined as the set of points r such that r ∈ Di,
r /∈ Di+1 ∪ Si+1; the domain D0 is the interior of the body and S0 is its
surface. The density distribution ρ(r) is positive in the whole interior of
the body and it is defined as follows. For each i (0 ≤ i ≤ I), the interior
limiting value of density at the surface Si is a constant ρi,0: [ρ(s)]int = ρi,0
for s ∈ Si. For each i (0 ≤ i < I), the exterior limiting value of density at
the surface Si+1 is a constant ρi,1: [ρ(s)]ext = ρi,1 for s ∈ Si+1; for i = I
we define ρI,1 as the maximum of density in the domain DI . The constants
ρi,0 and ρi,1 have to satisfy the inequalities

0 ≤ i ≤ I : ρi,0 ≤ ρi,1 , (233)
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0 ≤ i < I : ρi,1 ≤ ρi+1,0 . (234)

For the i-th layer, if ρi,0 = ρi,1, then the density ρ(r) is in this layer equal
to the constant ρi,0; if ρi,0 < ρi,1, then for any ρ such that ρi,0 < ρ < ρi,1 the
set of points r for which ρ(r) = ρ is a smooth, closed and simply connected
surface Si(ρ) which is the boundary of domain Di(ρ) and

0 ≤ i ≤ I , ρi,0 < ρ0 < ρ1 < ρi,1 : Di(ρ1) ⊂ Di(ρ0) . (235)

Speaking freely, the density is in each layer either constant or it is contin-
uously increasing towards the centre of the body. Finally, we impose the
condition that the density distribution ρ(r) is rotationally symmetric and
symmetric with respect to the equatorial plane; the same thus holds for all
above defined domains and surfaces.

Now we can formulate the generalization of the main result of the pre-
vious Section: for the layered body as defined above, if all surfaces Si and
Si(ρ) (0 ≤ i ≤ I, ρ > 0, the latter if they exist) are rotational ellipsoids with
common centre and rotational axis, the layered body can be in equilibrium
only if it is a homogeneous body. In addition, the external gravitational
field of such layered body can be equal to the normal gravitational field
only if the body is homogeneous and if the value of angular velocity ω is
that corresponding to the homogeneous body.

The consequences of these results are far reaching, and therefore it is very
surprising that even their mere existence is rarely mentioned in standard
textbooks (the author itself has had no knowledge of them before finishing
this work). It is astonishing that, as one can see from Moritz (1990), Section
3.2.4, (theorem of Hamy – Pizzetti), these facts are known for more than
120 years and they were treated by several outstanding geodesists. We still
note that our proof is completely different from that presented in Moritz
(1990).

On the other hand, all this does not mean that we do not know what
can be the density distribution which generates the normal gravitational
field. Quite on the contrary, there exists a (relatively simple) way to find
not only some single density distribution, but all density distributions (from
certain class of smooth functions) generating the (arbitrarily) given external
gravitational field for a body with (almost arbitrary) shape with a smooth
boundary. For the case of the body with the shape of the rotational ellip-
soid this way is described in the author’s work P99 (which itself is based
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on several previous author’s works). Moreover, there is a straightforward
generalization to the class of piecewise smooth density distributions. How-
ever, we shall not treat this matter here in order to keep the length of the
present paper limited. We have to stress only the following extremely im-
portant aspect: the mentioned density distributions are constructed without
considering any equilibrium condition. The question whether there can be
found (in closed form) any density distribution satisfying also the equilib-
rium condition seems to be very difficult to answer.

We have to note that similar approach to the global inverse gravimetric
problem for the body with the shape of the rotational ellipsoid was devel-
oped by H. Moritz; it is presented in Moritz (1990), Chapters 5 – 7 (the
author has had no previous knowledge of this book).

Another way out of the problem may be the direct calculation of the
gravitational field of a homogeneous body whose shape differs slightly from
the rotational ellipsoid (this does not mean that the difference is infinites-
imal). Although it is unlikely that the result can be obtained in a closed
form, there is a chance to express it as a series in terms of some parame-
ter describing the deviation of the surface from the rotational ellipsoid. In
our opinion, the expression of the gravitational intensity and potential in
form of an integral over the surface of the body can represent the base for
such approach. It seems that there is a chance to construct a layered body
whose layer boundaries are surfaces of this kind and satisfy the equilibrium
conditions.
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