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Diagonality of certain functions
with respect to spherical functions

V. Pohánka
Geophysical Institute of the Slovak Academy of Sciences1

A bs t r a c t : It is shown that certain functions of two unit vectors are diagonal when

expressed as a series of spherical functions. These functions arise by decomposing the

kernel of the integral equation corresponding to the Dirichlet and Neumann boundary

problems for the Laplace equation for the rotational ellipsoid into a series of powers of

the numerical eccentricity of ellipsoid.
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1. Introduction

It is well known that the Dirichlet and Neumann boundary problems
for the Laplace equation in some domain can be transformed to the form of
integral equations. In the case that this domain is bounded by the surface of
a rotational ellipsoid, it can be easily shown (see [2]) that solutions of these
equations can be obtained from the solutions of a single integral equation
([2], 2.20) whose kernel is given by ([2], 3.1). This kernel can be expressed
as a series of powers of the numerical eccentricity of ellipsoid ([2], 3.7, 3.6).
The purpose of this work is to prove the equalities ([2], 3.20, 3.21) from
which the diagonality of the integral kernel can be derived.

We use here the notation from [2]: the point of the unit sphere with
angular coordinates ξ, ψ (0 ≤ ξ ≤ π, 0 ≤ ψ < 2π) is expressed as the unit
vector

v = i sin ξ cosψ + j sin ξ cosψ + k cos ξ, (1.1)
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where unit vectors i, j,k are mutually orthogonal; the solid angle element
is dΞ = sin ξ dξ dψ (any primed quantity is obtained by replacing ξ, ψ by
ξ′, ψ′). Spherical functions Yn,m(v) (they are nonzero only for |m| ≤ n) are
given by

Yn,m(v) =

√

(2n+ 1)
(n− |m|)!

(n+ |m|)!
P|m|
n (cos ξ) eimψ (1.2)

and they are orthonormal on the surface of the unit sphere ([2], 3.11).
A function of two variables f(v,v′) is diagonal with respect to the basis

represented by the spherical functions if there are such coefficients fn,m that
for any n,m such that |m| ≤ n it holds

1

4π

∫

dΞ′ f(v,v′) Yn,m(v′) = fn,m Yn,m(v) (1.3)

(integration is performed over the surface of the unit sphere). Then this
function can be expressed as a series

f(v,v′) =
∑

n≥0

∑

|m|≤n
fn,mYn,m(v) Y∗

n,m(v′) (1.4)

(at least formally, as this series need not to converge); the conventions for
writing of sums are given in [2], Section 3. As from (1.2) it follows that
Y∗
n,m(v) = Yn,−m(v), if the function f(v,v′) is real, then f ∗n,m = fn,−m.

Moreover, if this function is symmetric with respect to the exchange of
variables v,v′, then fn,m = fn,−m and thus coefficients fn,m are real.

In analogy to formula ([2], 3.17), using the equality

Pn(v·v
′) =

1

2n+ 1

∑

|m|≤n
Yn,m(v) Y∗

n,m(v′) (1.5)

holding for n ≥ 0 ([1], 3.11.2) and the Cauchy inequality, for any function
f(v,v′) which is written in the form (1.4) and any coefficients Fn such that
for |m| ≤ n it is

|fn,m| ≤ Fn, (1.6)

we get

∣

∣

∣

∑

|m|≤n
fn,mYn,m(v) Y∗

n,m(v′)
∣

∣

∣

2
≤

≤
(

∑

|m|≤n
|fn,m|

2 Yn,m(v) Y∗
n,m(v)

)(

∑

|m|≤n
Yn,m(v′) Y∗

n,m(v′)
)

≤
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≤ F 2
n

(

∑

|m|≤n
Yn,m(v) Y∗

n,m(v)
)(

∑

|m|≤n
Yn,m(v′) Y∗

n,m(v′)
)

=

= F 2
n ((2n+ 1)Pn(1))

2 = (2n+ 1)2 F 2
n (1.7)

and thus (for n ≥ 0)

∣

∣

∣

∑

|m|≤n
fn,m Yn,m(v) Y∗

n,m(v′)
∣

∣

∣ ≤ (2n+ 1)Fn. (1.8)

2. Demonstration of diagonality

We want to demonstrate the diagonality of functions Ni(v − v′) (for
i ≥ 0), where

Ni(w) =
1

|w|

(

(w·k)2

w2

)i

. (2.1)

Using formula (1.1) we denote for brevity

ν = v·v′ = cos ξ cos ξ′ + sin ξ sin ξ′ cos(ψ − ψ′), (2.2)

ζ = (v − v′)·k = cos ξ − cos ξ′ (2.3)

(it is |ν| ≤ 1, |ζ| ≤ 2), so that (v − v′)2 = 2(1 − ν) and quantities ν and ζ
satisfy the inequality

ζ2 ≤ 2(1 − ν). (2.4)

Functions Ni(v − v′) can be now expressed in the form

Ni(v − v′) =
1

√

2(1 − ν)

(

ε2

2(1 − ν)

)i

(2.5)

showing that they are singular for ν = 1. Therefore it would be advanta-
geous to express these functions as a limit of some (suitably chosen) non-
singular functions. This is straightforward in the case i = 0: we can write

N0(v − v′) =
1

√

2(1 − ν)
= limλ→1−

1

d(λ, ν)
, (2.6)
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where

d(λ, ν) =
√

1 − 2λν + λ2 (2.7)

(in the next it will always be 0 ≤ λ < 1). Using the well known expansion

1

d(λ, ν)
=

∑

n≥0
λn Pn(ν) (2.8)

(converging for fixed λ absolutely and uniformly with respect to variable ν)
and formula (1.5) we get

1

d(λ, ν)
=

∑

n≥0

λn

2n+ 1

∑

|m|≤n
Yn,m(v) Y∗

n,m(v′) (2.9)

what demonstrates that function 1/d(λ,v·v′) is diagonal with respect to the
basis represented by the functions Yn,m(v).

Therefore, we aim to show that there are such functions Ni(λ,v,v
′) (for

any i ≥ 0) which are nonsingular, diagonal, symmetric with respect to the
exchange of variables v,v′ and it holds

Ni(v − v′) =
ζ2i

d(1, ν)2i+1
= limλ→1−Ni(λ,v,v

′). (2.10)

According to the previous section these functions can be written in the form
(1.4)

Ni(λ,v,v
′) =

∑

n≥0

∑

|m|≤n
Ni,n(λ,m

2) Yn,m(v) Y∗
n,m(v′) (2.11)

and their nonsingularity can be expressed as the requirement that this series
converges (for fixed λ, 0 ≤ λ < 1) absolutely and uniformly. From definition
(1.2) it is evident that

mYn,m(v) = − i ∂ψYn,m(v) (2.12)

and if Ni,n(λ, x) are well behaved functions of x (for example, if they are
polynomials of x), we can write (2.11) in the form

Ni(λ,v,v
′) =

∑

n≥0

∑

|m|≤n
Ni,n(λ,− ∂2

ψ) Yn,m(v) Y∗
n,m(v′) =

=
∑

n≥0
Ni,n(λ,− ∂2

ψ)
∑

|m|≤n
Yn,m(v) Y∗

n,m(v′) =

=
∑

n≥0
(2n+ 1)Ni,n(λ,− ∂2

ψ) Pn(v·v
′), (2.13)
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where we used formula (1.5).
Thus let us investigate the result of applying operator ∂2

ψ and its powers
on a function of v·v′. If we denote

χ = 1 − cos ξ cos ξ′, (2.14)

from formulae (2.2) and (2.3) we can find

∂2
ψν = − sin ξ sin ξ′ cos(ψ−ψ′) = 1 − χ− ν, (2.15)

(∂ψν)
2 = (− sin ξ sin ξ′ sin(ψ−ψ′))2 = 1 − ζ2 − 2(1−χ)(1−ν) − ν2. (2.16)

Then we can write for some function f(ν)

∂2
ψf(ν) = (∂ψν)

2 ∂2
νf(ν) + (∂2

ψν) ∂νf(ν) =

= (1 − ζ2 − 2(1−χ)(1−ν) − ν2) ∂2
νf(ν) + (1 − χ− ν) ∂νf(ν) (2.17)

and we see that the expression on the r.h.s. is a polynomial (of degree
one at the most) of variables χ and ζ2. This means that by applying some
polynomial (of degree k) of operator ∂2

ψ on function f(ν) we get a polynomial

of variables χ and ζ2 of degree k at the most.
Formulae (2.5), (2.6) and (2.8) indicate that it will be suitable to ex-

press the dependence on ν in terms of function d(λ, ν) (λ is now a fixed
parameter). According to (2.7) we have

∂νd(λ, ν) = −
λ

d(λ, ν)
, ∂2

νd(λ, ν) = −
λ2

d(λ, ν)3
(2.18)

and

1 − χ− ν =
1

2λ
(d(λ, ν)2 − 2λχ− (1 − λ)2), (2.19)

1 − ζ2 − 2(1−χ)(1−ν) − ν2 =

=
1

4λ2

(

− d(λ, ν)4 + 2(2λχ + (1 − λ)2) d(λ, ν)2 −

− 4λ(1 − λ)2χ− 4λ2ζ2 − (1 − λ)4
)

. (2.20)

We introduce differential operator δx

δx = x∂x (2.21)

(which has the favourable property that δxx
α = αxα) and from (2.17) we

get for some function g(λ, d(λ, ν))
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∂2
ψg(λ, d(λ, ν)) =

1

4

(

− d(λ, ν)4 + 2(2λχ+ (1 − λ)2) d(λ, ν)2 −

− 4λ(1 − λ)2χ− 4λ2ζ2 − (1 − λ)4
)

·

·

(

1

d(λ, ν)2
∂2
dg(λ, d(λ, ν)) −

1

d(λ, ν)3
∂dg(λ, d(λ, ν))

)

−

−
1

2
(d(λ, ν)2 − 2λχ− (1 − λ)2)

1

d(λ, ν)
∂dg(λ, d(λ, ν)) =

=
1

4

(

− 1 + 2
2λχ+ (1 − λ)2

d(λ, ν)2
−

4λ(1 − λ)2χ+ 4λ2ζ2 + (1 − λ)4

d(λ, ν)4

)

·

· (d(λ, ν)2 ∂2
dg(λ, d(λ, ν)) − d(λ, ν) ∂dg(λ, d(λ, ν))) −

−
1

2

(

1 −
2λχ+ (1 − λ)2

d(λ, ν)2

)

d(λ, ν) ∂dg(λ, d(λ, ν)) =

=

(

−
1

4
+
P (λ, χ)

d(λ, ν)2
−
Q(λ, χ, ζ)

d(λ, ν)4

)

(δd − 2)δdg(λ, d(λ, ν)) −

−

(

1

2
−
P (λ, χ)

d(λ, ν)2

)

δdg(λ, d(λ, ν)) =

=

(

−
1

4
δd +

P (λ, χ)

d(λ, ν)2
(δd − 1) −

Q(λ, χ, ζ)

d(λ, ν)4
(δd − 2)

)

δdg(λ, d(λ, ν)), (2.22)

where we write for brevity ∂d instead of ∂d(λ,ν) and δd instead of δd(λ,ν), and
we have denoted

P (λ, χ) =
1

2
(2λχ+ (1 − λ)2), (2.23)

Q(λ, χ, ζ) =
1

4
(4λ(1 − λ)2χ+ 4λ2ζ2 + (1 − λ)4). (2.24)

We see that by applying an operator K(∂2
ψ) (where K(x) is a polynomial of

degree k) on function g(λ, d(λ, ν)) we get a polynomial of variables P (λ, χ)
and Q(λ, χ, ζ) of degree k at the most. If the function g(λ, d(λ, ν)) has the
form of a linear combination of only even (or only odd) powers of d(λ, ν),
the same is true for the function K(∂2

ψ) g(λ, d(λ, ν)), because operator ∂2
ψ

can change the power of d(λ, ν) only by an even number (decrease it by 0,
2 or 4). Further, if the function g(λ, d(λ, ν)) is a linear combination of odd
powers of d(λ, ν), function K(∂2

ψ) g(λ, d(λ, ν)) is a polynomial of variable

Q(λ, χ, ζ) of degree exactly k, as in this case operator ∂2
ψ always increases the

6



power of Q(λ, χ, ζ) by one (this is because operator (δd−2)δd cannot cancel
any odd power of d(λ, ν)). Particularly, if g(λ, d(λ, ν)) is d(λ, ν)2I−1 (with
integer I), then any term of function K(∂2

ψ) g(λ, d(λ, ν)) not containing

variable P (λ, χ) has to have the form Q(λ, χ, ζ)l d(λ, ν)2I−4l−1 (apart from
a numerical coefficient depending only on I and l), where 0 ≤ l ≤ k. As we
have P (1, χ) = χ and Q(1, χ, ζ) = ζ2, in the limit λ → 1− any such term
acquires the form ζ2l d(1, ν)2I−4l−1 (with the same numerical coefficient).

As according to formulae (2.10) and (2.13) it has to hold (for all i ≥ 0)

ζ2i

d(1, ν)2i+1
= limλ→1−

∑

n≥0
(2n+ 1)Ni,n(λ,− ∂2

ψ) Pn(ν), (2.25)

it is reasonable to adopt that all functions Ni,n(λ, x) are polynomials of
variable x of degree i at the most. Thus we write (for i ≥ 0, n ≥ 0)

Ni,n(λ, x) =
∑

0≤j≤i
Ni,j,n(λ) xj (2.26)

and we have for all i ≥ 0 (at least formally)

∑

n≥0
(2n+ 1)Ni,n(λ,− ∂2

ψ) Pn(ν) =

=
∑

n≥0
(2n+ 1)

∑

0≤j≤i
Ni,j,n(λ)(− ∂2

ψ)jPn(ν) =

=
∑

0≤j≤i
(− ∂2

ψ)j
∑

n≥0
(2n+ 1)Ni,j,n(λ) Pn(ν) =

=
∑

0≤j≤i
∂2j
ψ gi,j(λ, d(λ, ν)), (2.27)

where we denoted (for 0 ≤ j ≤ i)

gi,j(λ, d(λ, ν)) = (−1)j
∑

n≥0
(2n+ 1)Ni,j,n(λ) Pn(ν). (2.28)

From formula (2.25) we get the condition (i ≥ 0)

ζ2i

d(1, ν)2i+1
= limλ→1−

∑

0≤j≤i
∂2j
ψ gi,j(λ, d(λ, ν)) (2.29)

and as on the l.h.s. we have a single odd power of d(1, ν) (multiplied by an
even power of ζ), according to the previous discussion we adopt that (for
all 0 ≤ j ≤ i)
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gi,j(λ, z) = gi,j z
2i−1 (2.30)

(coefficients gi,j could be chosen to depend on λ, but this is not necessary).
Thus it has to hold

ζ2i

d(1, ν)2i+1
= limλ→1−

∑

0≤j≤i
gi,j ∂

2j
ψ d(λ, ν)

2i−1 =

= limλ→1−Ki(∂
2
ψ) d(λ, ν)2i−1, (2.31)

where

Ki(x) =
∑

0≤j≤i
gi,j x

j. (2.32)

According to (2.22) we introduce for brevity operator D(u, v, z, δz) by
the equality

D(u, v, z, δz) g(z) =

(

−
1

4
δz +

u

z2
(δz−1) −

v

z4
(δz−2)

)

δzg(z) (2.33)

and thus we have

∂2
ψg(λ, d(λ, ν)) = D(P (λ, χ), Q(λ, χ, ζ), d(λ, ν), δd(λ,ν)) g(λ, d(λ, ν)). (2.34)

Then we get from (2.31) the formula

ζ2i

d(1, ν)2i+1
=

= limλ→1−Ki(D(P (λ, χ), Q(λ, χ, ζ), d(λ, ν), δd(λ,ν) )) d(λ, ν)
2i−1 =

= Ki(D(χ, ζ2, d(1, ν), δd(1,ν))) d(1, ν)
2i−1 (2.35)

or

vi = z2i+1Ki(D(u, v, z, δz)) z
2i−1 (2.36)

(i ≥ 0, u is arbitrary). Now it is easy to find the leading coefficient of
polynomial Ki(x): from definitions (2.32) and (2.33) we see that the term
containing vi can come on the r.h.s. of (2.36) only from the i-th power of
the part of operator D(u, v, z, δz) linear in v; thus it has to hold

vi = z2i+1 gi,i

(

−
v

z4
(δz−2)δz

)i

z2i−1. (2.37)
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It can be easily proved by induction that for any i ≥ 0 it is
(

z−4(δz−2)δz
)i
f(z) = z−4i

(

∏

0≤l≤2i−1
(δz−2l)

)

f(z) (2.38)

(we define
∏

0≤n≤−1 ϕ(n) = 1 and
∏

0≤n≤0 ϕ(n) = ϕ(0); other conventions
are the same as for sums); then we have from (2.37)

1 = z2i+1 gi,i (−1)i z−4i
(

∏

0≤l≤2i−1
(δz−2l)

)

z2i−1 =

= gi,i (−1)i 22i
∏

0≤l≤2i−1
(i−l−1/2) =

= gi,i (−1)i 22i Γ(1/2+i)

Γ(1/2−i)
= gi,i 2

2i
(

Γ(1/2+i)

Γ(1/2)

)2

(2.39)

(see [1], 1.2.3) and finally

gi,i =
1

22i

(

Γ(1/2)

Γ(1/2+i)

)2

= gi. (2.40)

Now we can write polynomial Ki(x) in the form

Ki(x) = gi
∏

0≤l≤i−1
(x+ ai,l) (2.41)

and inserting in formula (2.36) we get

vi = z2i+1 gi
(

∏

0≤l≤i−1
(D(u, v, z, δz) + ai,l)

)

z2i−1. (2.42)

According to (2.33) it is clear that in the case i ≥ 1 the term containing z4i

will appear on the r.h.s. of (2.42) unless one of the constants ai,l is equal
to (2i − 1)2/4. In this way it is possible to find another such values and it
turns up that it could be (for all 0 ≤ l ≤ i− 1)

ai,l = (2l + 1)2/4. (2.43)

To prove that in this case formula (2.42) holds, we introduce operator
Ti(u, v, z, δz) by the formula (i ≥ 0)

Ti(u, v, z, δz) g(z) =
(

∏

0≤l≤i−1
(D(u, v, z, δz) + (l+1/2)2)

)

z2ig(z) (2.44)

and thus (2.42) gets the form

vi = z2i+1 gi Ti(u, v, z, δz) z
−1. (2.45)
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We have T0(u, v, z, δz) = 1 and for any i ≥ 0 we get using (2.33)

Ti+1(u, v, z, δz) g(z) =

(

1

4
((2i+1)2 − δ2z) +

u

z2
(δz−1)δz −

−
v

z4
(δz−2)δz

)

Ti(u, v, z, δz) z
2g(z). (2.46)

Now we write operator Ti(u, v, z, δz) in the form

Ti(u, v, z, δz) =
∑

|j|≤i
z2j Ti,j(u, v, δz) (2.47)

(it is evident that there are no other powers of z) and for i = 0 we have
T0,0(u, v, w) = 1 (we define Ti,j(u, v, w) to be zero if |j| > i). Inserting
(2.47) in (2.46) we get

∑

|j|≤i+1
z2j Ti+1,j(u, v, δz) =

=
∑

|j|≤i
z2j+2

(

1

4
((2i+1)2 − (δz+2j+2)2) +

u

z2
(δz+2j+1)(δz+2j+2) −

−
v

z4
(δz+2j)(δz+2j+2)

)

Ti,j(u, v, δz+2) =

=
∑

|j|≤i+1
z2j

(

1

4
((2i+1)2 − (δz+2j)2)Ti,j−1(u, v, δz+2) +

+u(δz+2j+1)(δz+2j+2) Ti,j(u, v, δz+2) −

− v(δz+2j+2)(δz+2j+4) Ti,j+1(u, v, δz+2)

)

(2.48)

and thus we have

Ti+1,j(u, v, w) = −
1

4
(w−2i+2j−1)(w+2i+2j+1) Ti,j−1(u, v, w+2) +

+ u(w+2j+1)(w+2j+2) Ti,j(u, v, w+2) −

− v(w+2j+2)(w+2j+4) Ti,j+1(u, v, w+2). (2.49)

Calculation of functions Ti,j(u, v, w) for a few low values of i shows that it
could be suitable to write

Ti,j(u, v, w) =
Γ(w/2+i+1)

Γ(w/2+j+1)

Γ(w/2+i+j+1/2)

Γ(w/2+1/2)
Si,j(u, v, w) (2.50)
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(thus also Si,j(u, v, w) is zero for |j| > i). Inserting in (2.49) we get the
condition

(w/2+1/2)Si+1,j (u, v, w) = − (w/2−i+j−1/2)Si,j−1(u, v, w+2) +

+4u(w/2+j+1/2)Si,j (u, v, w+2) −

− 4v(w/2+i+j+3/2)Si,j+1(u, v, w+2). (2.51)

According to (2.50) we have S0,0(u, v, w) = 1 and calculation of functions
Si,j(u, v, w) for a few low values of i shows that they do not depend on w.
Therefore we write

Si,j(u, v, w) = Si,j(u, v) (2.52)

and we obtain from (2.51) two conditions for functions Si,j(u, v):

Si+1,j(u, v) = −Si,j−1(u, v) + 4uSi,j(u, v) − 4v Si,j+1(u, v), (2.53)

0 = (i−j+1)Si,j−1(u, v) + 4uj Si,j(u, v) − 4v(i+j+1)Si,j+1(u, v). (2.54)

We multiply these equations with yj (where y is a parameter) and sum with
respect to index j. If we define the functions

Si(u, v, y) =
∑

|j|≤i
Si,j(u, v) y

j , (2.55)

we get for them the conditions

Si+1(u, v, y) =

(

− y + 4u−
4v

y

)

Si(u, v, y), (2.56)

0 =

(

y(i−δy) + 4uδy −
4v

y
(i+δy)

)

Si(u, v, y) (2.57)

and we have S0(u, v, y) = 1. Then we get from (2.56)

Si(u, v, y) =

(

− y + 4u−
4v

y

)i

(2.58)

and thus
(

y(i−δy) + 4uδy −
4v

y
(i+δy)

)

Si(u, v, y) =

=

[(

− y + 4u−
4v

y

)

δy +

(

y −
4v

y

)

i

](

− y + 4u−
4v

y

)i

= 0, (2.59)
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so that condition (2.57) is satisfied. This means that our presumption (2.52)
was correct and we can get the explicit expression for functions Si,j(u, v)
from (2.55) and (2.58) by using the binomial formula twice. For us it will
be sufficient to know that for fixed i, u, v (i ≥ 0), functions Si,j(u, v) are
finite and that

Si,−i(u, v) = (−4v)i. (2.60)

We can now write the explicit form of operator Ti(u, v, z, δz). Using
formulae (2.47), (2.50), (2.52) and denoting for brevity

Qi,j(w) =
Γ(w/2+i+1)

Γ(w/2+j+1)

Γ(w/2+i+j+1/2)

Γ(w/2+1/2)
(2.61)

(note that for |j| ≤ i it is a polynomial of variable w) we get

Ti(u, v, z, δz) =
∑

|j|≤i
Si,j(u, v) z

2j Qi,j(δz) (2.62)

and thus

Ti(u, v, z, δz) z
w =

∑

|j|≤i
Si,j(u, v) Qi,j(w) zw+2j. (2.63)

For us only the value w = −1 is interesting: in this case we see from (2.61)
that Qi,j(−1) is for |j| ≤ i nonzero only if j = −i (as Γ(α) is infinite only
for α = −n, n ≥ 0). Then we get using (2.60) and (2.61) (see also [1], 1.2.3)
for i ≥ 0

Ti(u, v, z, δz) z
−1 =

∑

|j|≤i
Si,j(u, v) Qi,j(−1) z2j−1 =

= Si,−i(u, v) Qi,−i(−1) z−2i−1 =

= (−4v)i
Γ(1/2+i)

Γ(1/2−i)
z−2i−1 = 22i

(

Γ(1/2+i)

Γ(1/2)

)2

vi z−2i−1 (2.64)

and according to (2.40) this proves formula (2.45). Therefore also formula
(2.42) with (2.43) is valid and the same is true for all previous forms of this
condition up to formula (2.29). Particularly, from (2.36) and (2.34) we get
(i ≥ 0)

Ki(∂
2
ψ) d(λ, ν)2i−1 =

Q(λ, χ, ζ)i

d(λ, ν)2i+1
. (2.65)
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3. Expression as a series of spherical functions

To proceed further we have to express function d(λ, ν)2i−1 as a series of
Legendre polynomials; we write

d(λ, ν)2i−1 =
∑

n≥0
bi,n(λ) λn Pn(ν) (3.1)

and according to (2.8) it is b0,n(λ) = 1. In order to find coefficients bi,n(λ)
for i ≥ 1, we use the formula

δλd(λ, ν) =
1

2

(

d(λ, ν) −
1−λ2

d(λ, ν)

)

(3.2)

from which we easily derive the equality

(i+1/2−δλ) d(λ, ν)
2i+1 = (i+1/2)(1−λ2) d(λ, ν)2i−1 (3.3)

and inserting (3.1) in (3.3) we get the condition (n ≥ 0)

(i+1/2−n−δλ) bi+1,n(λ) = (i+1/2)(1−λ2) bi,n(λ). (3.4)

From (3.1) it is easily possible to show (by induction with respect to i) that
coefficients bi,n(λ) can be expressed in the form of a series of λ; then it
follows from (3.4) that these coefficients are polynomials of 1−λ2 of degree
i (as the operator on the l.h.s. of (3.4) cannot cancel any integer power of
λ). Therefore we write (n ≥ 0)

bi,n(λ) =
∑

0≤j≤i
bi,j,n (1−λ2)j (3.5)

and we have b0,0,n = 1 (we define bi,j,n to be zero if not 0 ≤ j ≤ i). Then
we get inserting (3.5) in (3.4)

(i+1/2−n−δλ)
∑

0≤j≤i+1
bi+1,j,n (1−λ2)j =

=
∑

0≤j≤i+1
bi+1,j,n ((i+1/2−n−2j)(1−λ2)j + 2j(1−λ2)j−1) =

=
∑

0≤j≤i+1
((i+1/2−n−2j) bi+1,j,n + 2(j+1) bi+1,j+1,n)(1−λ

2)j =

= (i+1/2)
∑

0≤j≤i+1
bi,j−1,n (1−λ2)j (3.6)

and thus
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(i+1/2−n−2j) bi+1,j,n + 2(j+1) bi+1,j+1,n = (i+1/2) bi,j−1,n. (3.7)

Calculation of coefficients bi,j,n for a few low values of i indicates that we
can write

bi,j,n = (−1)i (n+1/2)
Γ(i+1/2)

Γ(1/2)

Γ(n+j−i+1/2)

Γ(n+i+3/2)
Bi,j,n (3.8)

(B0,0,n = 1 and Bi,j,n is zero if not 0 ≤ j ≤ i); inserting in (3.7) we get the
formula

(n+2j−i−1/2)Bi+1,j,n − 2(j+1)(n+j−i−1/2)Bi+1,j+1,n =

= (n+i+3/2)Bi,j−1,n. (3.9)

Calculation of coefficients Bi,j,n for a few low values of i shows that they do
not depend on n. Therefore we write

Bi,j,n = Bi,j (3.10)

and we get from (3.9) two conditions for coefficients Bi,j

Bi+1,j − 2(j+1)Bi+1,j+1 = Bi,j−1, (3.11)

j Bi+1,j − j(j+1)Bi+1,j+1 = (i+1)Bi,j−1. (3.12)

Then we easily find that

(i−j)Bi,j = (2i−j)(j+1)Bi,j+1 (3.13)

and we get (for 0 ≤ j ≤ i)

Bi,j =
(2i−j)!

j! (i−j)!
. (3.14)

This value of Bi,j satisfies both conditions (3.11), (3.12) and thus formula
(3.10) is valid. For the coefficients bi,j,n we get from (3.8), (3.10) and (3.14)
the expression (0 ≤ j ≤ i, n ≥ 0)

bi,j,n = (−1)i (n+1/2)
(2i−j)!

j! (i−j)!

Γ(i+1/2)

Γ(1/2)

Γ(n+j−i+1/2)

Γ(n+i+3/2)
(3.15)

and function d(λ, ν)2i−1 is (for i ≥ 0) expressed by formulae (3.1), (3.5) and
(3.15). We note that (for 0 ≤ j ≤ i) coefficient bi,j,n is a rational function
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of n and it contains n only in denominator which is a polynomial of n of
degree 2i − j. This means that the series on the r.h.s. of (3.1) converges
(for fixed λ, 0 ≤ λ < 1) absolutely and uniformly.

Returning to formula (2.28) we get according to (2.30) and (3.1)

Ni,j,n(λ) = (−1)j gi,j
1

2n+ 1
bi,n(λ) λn (3.16)

and from (2.26) using (2.32) we have

Ni,n(λ, x) =
1

2n+ 1
bi,n(λ) λnKi(−x). (3.17)

Inserting in (2.11) we get the required diagonal expression of functions
Ni(λ,v,v

′)

Ni(λ,v,v
′) =

=
∑

n≥0

∑

|m|≤n

1

2n+ 1
bi,n(λ) λnKi(−m

2) Yn,m(v) Y∗
n,m(v′) (3.18)

which can be written in the form analogical to (2.13) as

Ni(λ,v,v
′) =

∑

n≥0
bi,n(λ) λnKi(∂

2
ψ) Pn(ν). (3.19)

According to (2.41) and (2.43) we have

Ki(−m
2) = gi

∏

0≤l≤i−1
((l+1/2)2 −m2) =

= (−1)i gi
∏

−i≤l≤i−1
(m+l+1/2) =

= (−1)i gi
Γ(m+i+1/2)

Γ(m−i+1/2)
(3.20)

and thus for |m| ≤ n it holds

|Ki(−m
2)| = gi

∏

0≤l≤i−1
|(l+1/2)2 −m2| ≤

≤ gi
∏

0≤l≤i−1
((l+1/2)2 +m2) ≤

≤ gi
∏

0≤l≤i−1
((l+1/2)2 + n2). (3.21)
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Recalling that (1.8) follows from (1.6), we get from (3.21) using (1.5) and
(2.12) the bound

|Ki(∂
2
ψ) Pn(ν)| =

1

2n+ 1

∣

∣

∣

∑

|m|≤n
Ki(−m

2) Yn,m(v) Y∗
n,m(v′)

∣

∣

∣ ≤

≤ gi
∏

0≤l≤i−1
((l+1/2)2 + n2); (3.22)

as this bound is a polynomial of n, the series on the r.h.s. of (3.19) (and
thus also the series on the r.h.s. of (3.18)) converges (for fixed λ, 0 ≤ λ < 1)
absolutely and uniformly. Therefore it is possible to exchange the order of
summation and derivation on the r.h.s. of (3.19) and using (3.1) and (2.65)
to get

Ni(λ,v,v
′) =Ki(∂

2
ψ)

∑

n≥0
bi,n(λ) λn Pn(ν) =

=Ki(∂
2
ψ) d(λ, ν)2i−1 =

Q(λ, χ, ζ)i

d(λ, ν)2i+1
. (3.23)

This means that we have fulfilled all requirements we have posed on func-
tions Ni(λ,v,v

′); particularly, according to (2.24) formula (2.10) is valid.

We still find a bound on functions Ni(λ,v,v
′): from definitions (2.3) and

(2.14) we can easily derive the inequality

0 ≤ 4χ ≤ ζ2 + 4; (3.24)

then using (2.4) and (2.7) we get from (2.24) (for 0 ≤ λ < 1)

0 ≤ 4Q(λ, χ, ζ) = 4λ(1 − λ)2 χ+ 4λ2ζ2 + (1 − λ)4 ≤

≤ (1 − λ)4 + 4λ(1 − λ)2 + (λ(1 − λ)2 + 4λ2) ζ2 =

= (1 + λ)2 ((1 − λ)2 + λζ2) ≤

≤ (1 + λ)2 ((1 − λ)2 + 2λ(1 − ν)) = (1 + λ)2 d(λ, ν)2 (3.25)

and we have (for 0 ≤ λ < 1)

0 ≤
Q(λ, χ, ζ)

d(λ, ν)2
≤

(1 + λ)2

4
< 1. (3.26)

For 0 ≤ λ < 1 we can also easily prove the inequality
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d(λ, ν)2 = 1 − 2λν + λ2 ≥
1

2
(1 − ν) (3.27)

(for −1 ≤ ν ≤ 0 the l.h.s. is not smaller than 1 while the r.h.s. is not
greater than 1; for 0 ≤ ν ≤ 1 the l.h.s. has as a function of λ a minimum
for λ = ν, this minimum is equal to 1 − ν2 and thus not smaller than the
r.h.s.). Thus we obtain according to (3.23) and (2.2) (for 0 ≤ λ < 1) the
bound

0 ≤ Ni(λ,v,v
′) ≤

1

d(λ, ν)
≤

2
√

2(1 − ν)
=

2

|v − v′|
. (3.28)

Now we can write using (2.10) for any bounded function f(v)

1

4π

∫

dΞ′ Ni(v − v′) f(v′) =
1

4π

∫

dΞ′ limλ→1−Ni(λ,v,v
′) f(v′) =

= limλ→1−
1

4π

∫

dΞ′ Ni(λ,v,v
′) f(v′), (3.29)

as according to (3.28) functions Ni(λ,v,v
′) are uniformly (with respect to

λ) bounded by an integrable function. Then we get using (3.18), (3.5),
(3.15), (3.20), (2.40) and the orthonormality of spherical functions (i ≥ 0,
|m| ≤ n)

1

4π

∫

dΞ′ Ni(v − v′) Yn,m(v′) = limλ→1−
1

4π

∫

dΞ′ Ni(λ,v,v
′) Yn,m(v′) =

= limλ→1−
1

2n+ 1
bi,n(λ) λnKi(−m

2) Yn,m(v) =

=
1

2n+ 1
bi,0,nKi(−m

2) Yn,m(v) =

=
1

22i+1

(2i)!

i!

Γ(1/2)

Γ(i+1/2)

Γ(n−i+1/2)

Γ(n+i+3/2)

Γ(m+i+1/2)

Γ(m−i+1/2)
Yn,m(v) =

=
1

2

Γ(n−i+1/2)

Γ(n+i+3/2)

Γ(m+i+1/2)

Γ(m−i+1/2)
Yn,m(v) (3.30)

(see [1], 1.2.15). Thus functions Ni(v − v′) (for i ≥ 0) are diagonal with
respect to the basis represented by the functions Yn,m(v).
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