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Abstract: Gravity data used for a recovery of the Moho depths should (optimally) 

comprise only the gravitational signal of the Moho geometry. This theoretical 

assumption is typically not required in classical isostatic models, which are 

applied in gravimetric inverse methods for a recovery of the Moho interface. To 

overcome this theoretical deficiency, we formulate the gravimetric inverse 

problem for the consolidated crust-stripped gravity disturbances, which have 

(theoretically) a maximum correlation with the Moho geometry, while the 

gravitational contributions of anomalous density structures within the 

lithosphere and sub-lithosphere mantle (including the core-mantle boundary) 

should be subtracted from these gravity data. In the absence of a reliable 3-D 

Earth’s density model, our definitions are limited to the crustal and upper mantle 

density structures. The gravimetric forward modeling technique is applied to 

compute these gravity data using available models of major known anomalous 

crustal and upper mantle density structures. The gravimetric inverse problem is 

defined by means of the (non-linear) Fredholm integral equation of the first kind. 

After linearization of the integral equation, the solution to the gravimetric 

inverse problem is given in a frequency domain. The inverse problem is 

formulated for a generalized crustal compensation model. It implies that the 

compensation equilibrium is (theoretically) attained by both, the variable depth 

and density of compensation. A theoretical definition of this generalized crustal 

compensation model and a formulation of the gravimetric inverse problem for 

finding the Moho depths are given in this study.  
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1. Introduction 

The results of seismic surveys have been primarily used in global and regional 

geophysical studies investigating the lithosphere structure. Soller et al. (1982) 

derived the global Moho seismic model with a 2×2 arc-deg spatial resolution. The 

global Moho model compiled with a spectral resolution complete to degree 30 of 

spherical harmonics was presented by Čadek and Martinec (1991). Shapiro and 

Ritzwoller (2002) and Meier et al. (2007) compiled the global Moho models also 

based purely on seismic data analysis. Nataf and Ricard (1996) derived the global 

model of the crust and upper mantle density structures based on the analysis of 

seismic data and additional constraining information such as heat flow and 

chemical composition. For global studies the most often used (publically 

available) global crustal model is the CRUST2.0 (Bassin et al., 2000). The 

CRUST2.0 model contains information on the crustal density structure including 

the upper mantle. The CRUST2.0 is an upgrade of the CRUST5.1 (Mooney et al., 

1998). Both these models were compiled based on seismic data published until 

1995 and a detailed compilation of ice and sediment thickness. The globally 

averaged data from active seismic methods and deep drilling profiles were used 

to predict the crustal structure where no seismic measurements were available 

(most of Africa, South America, Greenland and large parts of oceans) by a 

generalization to similar geological and tectonic settings (see e.g., Tsoulis, 2004). 

The CRUST1.0 is the latest version, compiled with a 1×1 arc-deg spatial 

resolution.  

Over large areas of the world with a sparse coverage of seismic data, the 

gravimetric or combined gravimetric/seismic methods are applied. In gravimetric 

studies of the isostasy, two basic concepts have been commonly adopted, 

assuming that the topographic mass surplus and the oceanic mass deficiency are 

compensated either by a variable depth or density of compensation. The Pratt-

Hayford isostatic model is based on adopting a constant depth of compensation 

while considering a variable density contrast (Pratt, 1855; Hayford, 1909; 

Hayford and Bowie, 1912). In the Airy-Heiskanen isostatic model a constant 

density contrast is assumed while a depth of compensation is variable (Airy 1855; 
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Heiskanen and Vening Meinesz, 1958). Vening Meinesz (1931) modified the Airy-

Heiskanen theory by introducing a regional isostatic compensation based on a 

thin plate lithospheric flexure model (cf. Watts, 2001). Results of seismic studies 

acquired that the continental crust has a typical thickness of about 30 to 50 km 

with the largest crustal thickness (up to ∼80 km) along the convergent tectonic 

plate boundaries in the Andes (i.e., the ocean-to-continent subduction zone) and 

in the Himalayas (i.e., the continent-to-continent collision zone) extending 

beneath the Tibet Plateau. The oceanic crustal thickness is typically between 5 

and 15 km (cf. Bassin et al., 2000). These large variations in the crustal thickness 

as well as a general agreement between the crustal thickness estimated from 

seismic and gravity surveys more or less support the Airy-Heiskanen and Vening 

Meinesz theories of isostasy. According to the Airy-Heiskanen theory of a local 

compensation, there is no correlation between neighboring crustal columns. 

However, it is well known that the isostatic compensation is valid only at long 

wavelengths due to rigidity of the elastic lithosphere and viscosity of the 

asthenosphere, which are approximated more realistically by the Vening Meinesz 

isostatic model based on a regional compensation mechanism. In regional 

models the compensating masses are distributed laterally. To achieve this Vening 

Meinesz (1931) assumed that the crust is a homogenous elastic plate floating on 

a viscous mantle. The regional compensation model was later adopted in the 

Parker-Oldenburg isostatic method (Oldenburg, 1974). A similar method based 

on the iterative 3-D gravity inversion with integration of seismologic data was 

developed and applied by Braitenberg and Zadro (1999). Moritz (1990) utilized 

the Vening Meinesz inverse problem in solving the isostatic-gravimetric model 

for estimating the Moho depths. The methods of Parker-Oldenburg and Moritz 

are very similar. In fact both these models use the interface detection theory 

(Dorman and Lewis, 1970). It implies that the Bouguer gravity anomaly relates to 

elevation/depth at a certain position. Sjöberg (2009) formulated Moritz’s 

problem, called herein the Vening Meinesz-Moritz (VMM) problem of isostasy, as 

that of solving a non-linear Fredholm integral equation of the first kind. 

Sampietro et al. (2013) developed the method for the Moho recovery using the 
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GOCE gravity gradient data; see also Braitenberg et al. (2010) and Sampietro 

(2011). 

The isostatic mass balance depends on loading and effective elastic thickness, 

rigidity, rheology of the lithosphere and viscosity of the asthenosphere (see e.g., 

Watts, 2001). Moreover, geodynamic processes such as the glacial isostatic 

adjustment, present-day glacial melting, plate motion and mantle convection 

contribute to the time-dependent isostatic balance. The classical isostatic models 

are typically not able to model realistically the actual Moho geometry without 

using additional constraining information (mainly from results of seismic 

surveys). Moreover, seismic studies revealed that the Moho depth and density 

contrast vary significantly (cf. Geiss, 1987; Martinec, 1994; Kaban et al., 2003; 

Sjöberg and Bagherbandi, 2011). A possible way to partially overcome 

theoretical limitations of classical isostatic models is to use these models for 

different areas of the world based on the expectation that a particular isostatic 

model would better reproduce the reality. Following this principle, Wild and 

Heck (2004) and Makhloof (2007) applied the Airy-Heiskanen model over 

continents and the Pratt-Hayford model over oceans. Sjöberg and Bagherbandi 

(2011) proposed a more generalized concept. They developed and applied a 

least-squares approach, which combined seismic and gravity data in the VMM 

isostatic inverse scheme for a simultaneous estimation of the Moho depth and 

density contrast. They also presented and applied the non-isostatic correction to 

model for discrepancies between the isostatic and seismic models (cf. 

Bagherbandi and Sjöberg, 2012).  

In gravimetric studies the anomalous density structure not only within the crust 

but essentially within the whole lithosphere should be modeled (cf. Kaban et al., 

1999, 2004; Tenzer et al., 2009a, 2012a). Moreover, large portion of the isostatic 

mass balance is attributed to variable sub-lithosphere mantle density structure, 

which has significant effect especially on a long-wavelength part of the isostatic 

gravity spectra and consequently on the respective Moho geometry (cf. Sjöberg, 

2009). The gravitational field generated by all know anomalous density 

structures should be modeled and subsequently removed from observed gravity 
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field in prior of solving the gravimetric inverse problem. One example can be 

given in Greenland and Antarctica where the application of the ice (density 

contrast) stripping correction to gravity data is essential for a realistic 

interpretation of gravimetric results. Another significant gravitational 

contribution to be modelled and subsequently subtracted from gravity data is 

due to large sedimentary basins. Braitenberg et al. (2006) and Wienecke et al. 

(2007), for instance, demonstrated that the misfit of the isostatic assumption of 

the Moho interface to a long-wavelength part of the gravity field is explained by 

large sedimentary basins and rigidity variations of the crustal plate.  

In this study, the gravimetric inverse problem for finding the Moho depths is 

formulated for a generalized crustal compensation model. This compensation 

model assumes that the isostatic mass balance within the crust is attained not 

only by a variable depth of compensation (i.e., variable Moho depth), but also a 

variable density of compensation (i.e., variable Moho density contrast). It is 

further assumed that the (lateral) Moho density contrast is known from available 

models of the crustal and upper mantle structures. The application of the 

developed numerical approach on synthetic or real data is out of the scope of 

this study.  

 

2. Functional model  

We formulate a functional model between the (given) consolidated crust-

stripped gravity disturbances csgδ  and the (unknown) Moho depths D  (by 

means of Newton’s volumetric integral) in the following form  

      ( ) ( ) ( )
( )

Ω′′′
∂

′∂
Ω′∆−=Ω ∫∫ ∫

Φ∈Ω′
Ω′−=′

−

drdr
r

rrρrg
Dr

cs 2R

R

1
c/m ,,G, ψδ 

,                       (1) 

where -11106.674G ×=  m3kg-1s-2 is Newton’s gravitational constant; 
3106371R ×=  m is the Earth’s mean radius;  c/mρ∆  is the (laterally varying) 

Moho density contrast (in kg m-3);   is the Euclidean spatial distance of two 

points ( )Ω,r and ( )Ω′′,r ; ψ  is the respective spherical distance; and 
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λφφ ′′′=Ω′ ddd cos
 
is the infinitesimal surface element on the unit sphere. The 

3-D position is defined in the spherical coordinate system ( )Ω,r ; where r  is the 

spherical radius, and ( )λφ,=Ω  denotes the spherical direction with the spherical 

latitude φ  and longitude λ . The full spatial angle is denoted as 

( ) [ ] )[{ }π2,02/π,2/π:, ∈′∧−∈′′′=Ω′=Φ λφλφ . The unknown parameter in Eq. 

(1) is the Moho depth D′ , while it is assumed that the laterally varying Moho 

density contrast c/mρ∆  is a priori known (for instance, from results of seismic 

surveys). The consolidated crust-stripped gravity disturbances csgδ  on the left-

hand side of Eq. (1) are obtained from the gravity disturbances gδ  after applying 

the topographic and stripping gravity corrections of major known anomalous 

crustal density structures. The reasons of facilitating gravity disturbances instead 

of more commonly used gravity anomalies were discussed in detail by Vajda et 

al. (2007).  

The numerical procedures applied in the gravimetric forward modeling of these 

gravity corrections were given in Tenzer et al. (2008; 2009a; 2010a; 2010b; 

2011a). The global results of the topographic and crust components stripping 

gravity corrections and the step-wise consolidated crust-stripped gravity data 

were presented and discussed in Tenzer et al. (2009b, 2012b). Tenzer et al. 

(2011b) demonstrated that the consolidated crust-stripped gravity disturbances 

are significantly correlated with the Moho geometry; the correlation coefficient 

between these two quantities is 0.96; see also Tenzer et al. (2009b). The GRS-80 

(Moritz, 1990) normal gravity field is typically considered in computing the 

gravity disturbances. Alternatively, more complex Earth’s model can be adopted, 

such as the Preliminary Reference Earth Model (PREM; Dziewonski and 

Anderson, 1981).  

Introducing the radial integral kernel function K  as   

                                       ( ) ( ) rdr
r

rrDr
Dr

′′
∂

′∂
−=′ ∫ ′−=′

−
2R

R

1 ,,,,K ψψ 
,                     (2) 

Eq. (1) becomes   
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                                       ( ) ( ) ( ) Ω′′Ω′∆=Ω ∫∫
Φ∈Ω′

dDrρrg cs ,,KG, c/m ψδ .                       (3) 

where ( ) DD ′≡Ω′ . The expression in Eq. (3) is a non-linear Fredholm integral 

equation of the first kind. Its linearization is done by applying the Taylor series 

with respect to the Moho depth values D′ , while disregarding the higher than 

first-order terms. The relative linearization errors in Eq. (3) are of order ∼1×10-3. 

Tenzer et al. (2012b) estimated that relative uncertainties in the computed 

values of the consolidated crust-stripped gravity disturbances csgδ  can reach 

∼10%. The linearization errors are thus completely negligible. The linearization 

yields  

           ( ) ( ) ( ) ( )∫∫
Φ∈Ω′

Ω′′′
′∂

∂
Ω′∆+Ω≅Ω dDDr

D
ρrgrg ics δψδ ,,KG,, c/m ,             (4) 

where D′δ  is the (differential) Moho depth correction. The compensation 

attraction ig  in Eq. (4) is computed from the a priori (initial) Moho depths 0D′  

(using, for instance, the CRUST1.0 Moho depths) according to the following 

expression  

           ( ) ( ) ( )
Ω′′′

∂
′∂

Ω′∆−=Ω ∫∫ ∫
Φ∈Ω′

′−=′

−

drdr
r

rrρrg
Dr

i 2R

R

1
c/m

0

,,G, ψ
  

                         ( ) ( )∫∫
Φ∈Ω′

Ω′′Ω′∆= dDrρ 0
c/m ,,KG ψ .                                                       (5) 

It is assumed that the values of the Moho density contrast c/mρ∆  in Eq. (5) are a 

priori known (e.g., from the CRUST1.0). We further define the complete crust-

stripped (relative to the upper mantle lateral density) isostatic gravity 

disturbance mgδ  as (Tenzer et al., 2012b) 

                                ( ) ( ) ( )Ω−Ω=Ω ,,, rgrgrg icsm δδ .                                               (6) 

Inserting from Eq. (6) back to Eq. (4), we get    

                         ( ) ( ) ( )∫∫
Φ∈Ω′

Ω′′′Ω′∆=Ω dDDrρrg m δψδ ,,TG, c/m ,                               (7)  
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where 

                                    ( ) ( )Dr
D

Dr ′
′∂

∂
=′ ,,K,,T ψψ .                                                (8) 

The linearized integral equation in Eq. (7) defines the relation between the input 

gravity data mgδ  and the unknown (and sought) Moho correction terms D′δ . 

These correction terms are found based on solving the gravimetric inverse 

problem. The application of D′δ  to the a priori (initial) Moho model 0D′  yields 

the final result D′ ; i.e., DDD ′+′=′ δ0 .  

 

3. Spectral form of integral kernels K and T 

The spectral representation of the reciprocal spatial distance 1−  for the external 

convergence domain R≥r
 
(and R<′r ) reads (e.g. Heiskanen and Moritz, 1967) 

                     ( ) ( )∑
∞

=

− 





 ′

=′
0

n
1 P1,,

n

n

t
r
r

r
rr ψ ,                                            (9) 

where nP  is the Legendre polynomial of degree n
 
with argument ψcos=t ; 

( )λλφφφφψ −′′+′= coscoscossinsincos . From Eq. (9), the radial derivative of 

1− is found to be                                              

   
( ) ( ) ( )∑

∞

=

+−

+





 ′

′
−=

∂
′∂

0
n

2

2

1

P11,,
n

n

tn
r
r

rr
rr ψ  .                              (10)  

Substitution from Eq. (10) to Eq. (2) yields  

                     ( ) ( ) ( ) rdtn
r
rDr

Dr
n

n

′+





 ′

=′ ∫ ∑′−=′

∞

=

+

n

R

R
0

2

P1,,K ψ .                     (11) 

Solving the integral of K  in Eq. (11), we get   

                          ( ) ( )
R

R0
n

3

P
3
1,,K

Drn

n

t
n
n

r
rrDr

′−=′

∞

=

+

∑ +
+







 ′

=′ψ .                       (12) 

After substituting for the integral limits in Eq. (12), we arrive at  
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                   ( ) ( )∑
∞

=

++

+
+


















 ′
−−






=′

0
n

33

P
3
1

R
11R,,K

n

nn

t
n
nD

r
rDr ψ .          (13) 

Inserting for K  in Eq. (8) from Eq. (13) and solving the radial derivative, the 

spectral representation of the integral kernel T  is found to be     

( ) ( )∑
∞

=

++

+
+


















 ′
−−

′∂
∂







=

′∂
∂

=′
0

n

33

P
3
1

R
11RK,,T

n

nn

t
n
nD

Dr
r

D
Dr ψ   

                               ( )( ) ( )
2

0
n

2

R
1P

3
31R +∞

=

+







 ′
−

+
++







= ∑

n

n

n Dt
n

nn
r

 

                               ( ) ( )∑
∞

=

+

+





 ′−

=
0

n

2

P1R
n

n

tn
r

D .                                              (14) 

Denoting ( ) rD /R ′−=τ , Eq. (14) is finally rewritten as   

                                 ( ) ( ) ( )∑
∞

=

+ +=
0

n
2 P1,T

n

n tnt ττ .                                            (15) 

If the input gravity data mgδ  at the surface points are downward continued to 

sea level in prior of solving the gravimetric inverse problem, the kernel T  

becomes  

                               ( ) ( ) ( )∑
∞

=

+ +=
0

n
2

00 P1,T
n

n tnt ττ ,                                                 (16) 

where R/10 D′−=τ .  

The integral kernel ( )0,T τt  has a singularity for 110 →∧→ tτ . However, this 

singularity does not occur in the numerical solution because 0>′D . For 1=t

( )10 <τ : ( ) ( ) 2
0

2
00 1,1T −−= τττ . 

 

4. Spectral model  of the gravimetric inverse problem  

The input gravity data in the linearized integral equation (Eq. 7) of solving the 

gravimetric inverse problem are formed by the complete crust-stripped isostatic 
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gravity disturbances mgδ . These gravity data are obtained from csgδ  after 

applying the compensation attraction ig  relative to the lateral density of the 

upper mantle (Eq. 5). As already stated this stripping gravity correction is 

computed from a priori Moho model (and using a variable density contrast of the 

Moho interface). This gravitational contribution thus represents the initial Moho 

geometry with respect to which the Moho corrections are solved for. Whereas 

the consolidated crust-stripped gravity disturbances csgδ  should have a 

maximum correlation with the Moho geometry, the complete crust-stripped 

isostatic gravity disturbances mgδ  should have (theoretically) a minimum 

correlation with the Moho geometry, especially if the initial Moho model closely 

approximates the final gravimetric Moho solution. However, the gravitational 

signals of the deep mantle heterogeneities (including the core-mantle boundary) 

are still present in these refined gravity data. In the absence of a reliable 3-D 

global mantle model, this gravitational contribution can be treated in the 

spectral domain by subtracting a long-wavelength part of gravity spectrum (to a 

certain degree of spherical harmonics) from the isostatic gravity field spectrum.  

From Eq. (15), the spectral representation of the integral kernel ( )τ,T t  is given 

by  

                            ( ) ( ) ( )tDn
r

t
n

n

n

n

2

0

2

P
R

11R,T
+∞

=

+







 ′
−+






= ∑τ .                             (17) 

Substituting from Eq. (17) to the integral equation in Eq. (7), we arrive at   

      ( ) ( ) ( ) ( ) Ω′′





 ′
−Ω′∆+






=Ω ∫∫∑

Φ∈Ω′

+∞

=

+

dDtDρn
r

rg
n

n

n
m δδ n

2
c/m

0

2

P
R

11RG, .        (18) 

Since the expansion of the integral kernel ( )τ,T t  into a series of spherical 

functions converges uniformly for the external domain R>r , the interchange of 

summation and integration in Eq. (18) is permissible (cf. Moritz, 1990). The 

application of the binomial theorem to the term ( ) 2R/1 +′− nD  on the right-hand 

side of Eq. (18) yields  
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( ) k

k

kn

k

n

D
k

nD ′−







 +
≅






 ′
− ∑

+

=

+

R
12

R
1

2

0

2

.                           (19) 

Inserting from Eq. (19) back to Eq. (18), we get    

                  ( ) ( )∑
∞

=

+

+





=Ω

0

2

1RG,
n

n
m n

r
rgδ  

                                  ( ) ( ) ( ) Ω′′′Ω′∆
−








 +
× ∫∫∑

Φ∈Ω′

+

=

dtDDρ
k

n k
k

kn

k
n

c/m
2

0
P

R
12

δ .              (20) 

We further define the Moho-correction spherical function nδM   of degree n   as  

                                     ( ) ( ) ( ) Ω′′′Ω′∆
+

=Ω ∫∫
Φ∈Ω′

dtDDρn
n

c/m
n P

π4
12δM δ  

                                                  ( )∑
−=

Ω=
n

nm
mn,mn, YδM ,                                                  (21) 

where mn,Y
 
are the (fully-normalized) surface spherical harmonic functions of 

degree n  and order m , and mn,δM  are the Moho corrections coefficients. The 

corresponding higher-order terms ( ){ }...,4,3,2:δM k
n =k   read 

                                   ( )( ) ( ) ( ) Ω′′′Ω′∆
+

=Ω ∫∫
Φ∈Ω′

dtDDρn k
n

c/mk
n P

π4
12δM δ  

                                                  ( ) ( )∑
−=

Ω=
n

nm
mn,

k
mn, YδM .                                                  (22) 

From Eqs. (20-22), we get  

                                ( ) ∑
∞

=

+

+
+







=Ω

0

2

12
1RGπ4,

n

n
m

n
n

r
rgδ  

                                                ( ) ( ) ( )∑∑
−=

+

=

Ω
−








 +
×

n

nm
mn,

k
mn,

2

0
YδM

R
12

k

kn

k k
n

.                  (23) 

To relate the spherical functions nδM  (and their higher-order terms) with 

spherical harmonics, which describe the Earth’s gravity field, the constituents on 

the right-hand side of Eq. (22) are scaled by the geocentric gravitational constant 
8103986005GM ×=  m3s-2. For the spherical approximation, the geocentric 

gravitational constant is given by (e.g., Novák, 2010) 



13 

                                            
Earth3 ρRG

3
π4GM = ,                                                     (24) 

where 5500Earth =ρ  kg m-3 is the Earth’s mean mass density. 

Combining Eqs. (23) and (24) and limiting the spectral solution to a certain 

interval  maxmin NnN ≤≤  of spherical harmonics, we get 

                      ( ) ( ) ( )∑∑
−==

+

Ω+





=Ω

n

nm
mn,

δM
mn,

2

2 YF1R
R
GM,

max

min

N

Nn

n
m n

r
rgδ ,                    (25) 

where minN  and maxN  are the lower and upper summation indexes respectively. 

The numerical coefficients δM
mn,F  are given by 

                        ( ) ( )k
mn,1

2

0
Earth

δM
mn, δM

R
12

ρ
3

12
1F +

+

=

−







 +
+

= ∑ k

kn

k k
n

n
.                                  (26) 

The gravimetric inverse problem in Eq. (25) can be simplified by assuming only a 

constant value of the Moho  density contrast c/mρ∆ .   Hence 

                   ( ) ( ) ( )∑∑
−==

+

Ω+





=Ω

n

nm
mn,

δD
mn,

2

2 YF1R
R
GM,

max

min

N

Nn

n
m n

r
rgδ ,                    (27) 

where the coefficients δD
mn,F  read  

                             ( ) ( )k
mn,1

2

0
Earth

c/m
δD

mn, δD
R

12
ρ
ρ

12
3F +

+

=

−







 +∆
+

= ∑ k

kn

k k
n

n
.                         (28) 

The coefficients mn,δD  and their higher-order terms ( ){ }...,4,3,2:δD k
mn, =k  are 

defined as follows   

                               ( )( ) ( ) Ω′′′+
=Ω ∫∫

Φ∈Ω′

dtDDn k
n

k
n P

π4
12δD δ  

                                               ( ) ( )∑
−=

Ω=
n

nm
mn,

k
mn, YδD .                                   (29) 

The lower summation index minN  in Eqs. (25) and (27) determines the maximum 

degree of spherical harmonics, which should be removed from the input gravity 



14 

field. It is expected that a subtracted long-wavelength gravity contribution is 

attributed mainly to the mantle structure and the core-mantle boundary. 

However, our current knowledge about the spatial mantle density structure is 

restricted by the lack of reliable global data. A possible way how to estimate the 

degree minN
 

of long-wavelength spherical harmonic terms which should be 

removed from the gravity field was given by Eckhardt (1983). The principle of this 

procedure is based on finding the representative depth of gravity signal 

attributed to each spherical harmonic degree term. The spherical harmonics 

which have the depth below a certain limit (chosen, for instance, as the 

maximum Moho depth) are removed from the gravity field.  Nonetheless, the 

complete subtraction of the gravity signal from the mantle density structure 

using this procedure is questionable, because there is hardly any unique spectral 

distinction between the long-wavelength gravity signal from the mantle and the 

expected higher-frequency signal of the Moho geometry. Tenzer et al. (2012b) 

demonstrated the presence of significant correlation (>0.6) between the mantle 

gravity signal and the Moho geometry at the medium gravity spectrum (between 

60 and 90 of spherical harmonics degree terms). On the other hand, the gravity 

signal of the core-mantle boundary could be completely subtracted from the 

refined gravity data as it is fully attributed to a long-wavelength part of gravity 

field.   

 

5. Model uncertainties  

The expected largest uncertainties in the estimated Moho depths are mainly due 

to inaccuracies of crustal models currently available. As stated before, the 

relative errors in computed values of the consolidated crust-stripped gravity data 

can reach ∼10% (Tenzer et al., 2012b). The global models of the Earth’s gravity 

field, topography, ice, and bathymetry have a relatively high resolution and 

accuracy. The computation of the gravity data, which are corrected for the 

gravitational contributions of these density components can thus be done with a 

sufficient accuracy. On the other hand, the datasets of the spatial density 

distribution of sediments and consolidated (crystalline) crust have a low accuracy 
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and resolution (i.e., the CRUST1.0 data). The computation of respective gravity 

corrections and corrected gravity data is thus restricted especially over large 

parts of the world where these data are not available or their accuracy and 

resolution are very low. Čadek and Martinec (1991) estimated uncertainties of 

the Moho depths in their global crustal thickness model to be ∼20% (5 km) for 

the oceanic crust and of ∼10% (3 km) for the continental crust. The results of 

more recent seismic and gravity studies, however, revealed that these error 

estimates are too optimistic. Grad et al. (2009), for instance, demonstrated that 

the Moho uncertainties (estimated based on processing the seismic data) under 

the Europe regionally exceed 10 km with the average error of more than 4 km. 

Much larger Moho uncertainties are expected over large parts of the world 

where the seismic data are sparse.   

Similarly as uncertainties in the input gravity data, the errors in the Moho density 

contrast propagate proportionally to the errors in the estimated Moho depths. In 

regional studies covering areas with a relatively homogenous lithospheric 

structure, the constant value of the Moho density contrast can be adopted. 

There are several methods of treating the Moho density contrast in regional 

isostatic solutions. The most commonly used approach is based on the best 

fitting of the regional isostatic solution to seismic data. Steffen et al. (2011), for 

instance, applied this principle to model the Moho depths beneath Tien Shan. 

The assumption of a constant Moho density contrast, however, might not be 

sufficient in global gravimetric studies. As discussed in Introduction, results of 

seismic and gravity studies confirmed large variations of the Moho density 

contrast. Consequently, this assumption might yields large errors in the 

estimated global Moho depths. For this reason, the functional model for finding 

the Moho depths was formulated under the assumption that the variable Moho 

density contrast is a priori known from global seismic models.  
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6. Summary and concluding remarks  

The gravimetric inverse problem for a determination of the Moho geometry was 

derived by adopting a generalized crustal compensation model. This 

compensation model assumes a variable depth and density of compensation. 

The functional relation between the gravity data and the (unknown) Moho 

depths was established by means of the (non-linear) Fredholm integral equation 

of the first kind (Eq. 3). This functional relation takes into consideration the 

variable Moho density contrast. The gravity data in this functional model should 

have (theoretically) a maximum correlation with the (a priori) Moho geometry. 

The linearization was applied by means of incorporating the adopted 

compensation model (Eq. 4) which should minimize the correlation between the 

input gravity data and the Moho geometry. The solution to the gravimetric 

inverse problem was derived in a frequency domain.  

This functional model facilitates all available information on the density 

distribution within the crust and mantle. In the absence of a reliable 3-D mantle 

density model, we took into consideration only the major known crustal and 

upper mantle density structures (available from seismic surveys). Whereas in 

classical isostatic models the isostatic mass balance is established based on a 

particular hypothesis about the crustal density structure, this model takes into 

consideration also the density structure of the upper mantle. This is done 

practically by assuming a variable density contrast at the Moho interface in the 

computation of the compensation attraction (Eq. 5) and formulation of the 

linearized observation equation (Eq. 7). Moreover, this functional model allows 

treating the (unknown) deep mantle heterogeneities (including the core-mantle 

boundary) in a spectral domain by excluding the long-wavelength spherical 

functions (to a certain degree) directly from the functional model (Eq. 25).  

Formulation of the functional model in a spectral domain allows the selection of 

a maximum degree of spherical harmonics used in solving the inverse problem. 

In this way, the gravimetric forward modelling of the gravity field quantities is 
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realized only up a maximum degree of spherical harmonics which contain the 

signature of the Moho geometry, while a high-frequency part of the gravity 

spectrum (which comprises mainly a signal from shallow crustal density 

structures) is disregarded.   
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