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A b s t r a c t : The more precise determination of instantaneous peak frequency of 

Schumann resonance (SR) modes, especially based on relatively short signal sequences, 

seems to be important for detailed analysis of SR modal frequencies variations. Contrary 

to commonly used method of obtaining modal frequencies by Lorentzian fitting of DFT 

spectra, the attempt was made to employ the complex demodulation method in iterated 

form. The results for SR signals contaminated with low-frequency noise and hum in 

various degree as well as the comparison with standard method are presented. Real 

signals of vertical electric field component picked up at the Astronomical and 

Geophysical Observatory of Comenius University at Modra, Slovakia, were the primary 

sources.  
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1. Introduction 

 

The determination of instantaneous (short-term) modal frequencies from 

sample sequences of non-stationary signal consisting of several damped 

harmonic components (modes), plus wideband noise and hum, is not a simple 

task from both theoretical and computational point of view. Moreover, in the 

case of Schumann resonance (SR) signals, which exhibit the frequency and 

amplitude variations also in short-time scales (minutes and shorter) the choice of 

proper signal analysis method has no unique solution. 

In this article, the results of iterative use of the complex demodulation 

(CD) method for analyzing of real Schumann resonance signals are presented. 
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Original (raw) signals, or signals prefiltered by band-pass digital filters were 

both analysed by the same method. 

 

2. Measurements and motivation  

 

At the Astronomical and Geophysical Observatory of Comenius University 

(AGO), Modra, Slovakia, the measurements of the vertical electric field 

component of Schumann resonances have been performed since October 2001. 

The experimental set-up is described in Kostecký et al. (2000) and analysis of 

long-term measurements in Ondrášková et al. (2007, 2011). 

In (Ondrášková et al., 2011) the detailed analysis of daily frequency 

ranges (DFRs) of the first three SR modes in vertical electric field component is 

described. Each day was covered by 48 separate signal sequences lasting 327.68 

seconds taken every half an hour (since July 2006 by 240, each taken every 6 

minutes). The sampling frequency was 200 Hz. The modal frequencies were up 

to now determined by computing Discrete Fourier Transform (DFT) spectrum 

and its least-square fitting by the sum of five (or sometimes six) Lorentz 

functions (Rosenberg, 2004): 
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where P0 stands for the peak power (for a given mode), ω0 for the modal angular 

eigenfrequency and Q for the modal quality factor. This expression follows up 

from elementary equation of motion of the classical linear harmonic oscillator. 

For the spectral line profile (which has the form of the Lorentz function defined 

in Eq. 1), the physical meaning of the Q factor can be taken as the peak 

frequency of a given mode divided by the spectral line width at the half-

maximum power level (full width at half-maximum, FWHM). In other words, if 

the oscillator (in our case the Earth–lower ionosphere resonator) is excited by a 

very short pulse and then leave free, its energy diminishes by a factor e-1 during 

the time (π.Q/ω) – the approximation valid for high values of Q. 

At the first glance, this procedure seems to be quite straightforward. But 

a very low Q of the Earth–lower ionosphere resonance system (Q ~ 4÷10, see 

Nickolaenko and Hayakawa, 2002) results in substantial variations of “local ω0‘s 

and Q’s“, which may vary from one observation site to another, because such 

low-Q resonator (with spatially distributed damping) cannot be treated as linear 
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harmonic oscillator exactly. Nevertheless, it is necessary to find (and justify) 

some procedure for this purpose, suitable for processing of very huge quantities 

of data. Extraction of modal values from signal recordings could be partially 

improved using non-linear fitting (Mushtak and Williams, 2008), but the 

essential shortcomings of approximation by Lorentz functions, which are the 

spectral functions of linear harmonic weakly damped oscillator, remain. An 

example of spectrum fitting by six Lorentz functions can be seen in Fig. 1. 

The principal reason for our research was to determine Schumann modal 

eigenfrequencies by means of physically more adequate method. 

 

 

     
 

Fig. 1. An example of the sum of six Lorentz functions fitted to the power spectrum of 

the SR signal (the vertical electric component) from August 24, 2007, 00h 00m as 

determined from the whole 327.68 s long data sequence. The vertical green lines mark 

the position and relative amplitude of the first six eigenmodes. The peak frequencies are 

7.628 13.440, 20.062, 26.006, 31.933, and 39.237 Hz. Note that the parasitic peak at 

50/3 Hz is artificially cut out and the spectrum is smoothed by moving average method. 

 

 

3. Methods based on direct calculations of instantaneous frequency 
 

There is a variety of methods for determining the instantaneous (or short-term) 

frequency of general non-stationary process. A comprehensive and exhausting 

survey is given in Boashash (1992). We limit ourselves to estimation based on 

time derivative of continuous phase of oscillatory process (in the sense of Gabor 

definition based on Hilbert transformation) – (Bingham, Godfrey, Tukey, 1967; 

Marple, 1989; Loughlin and Tacer, 1996; Huang et al., 2009) and many others. 
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Moreover, the parametric (non-Fourier) methods, e.g. the Prony algorithm 

(Fernandes et al, 2005) are also available. 

Firstly, the method of complex demodulation must be mentioned. The 

method of in-phase and quadrature-phase filtering (Goodman, 1960; Verő, 1972) 

was successfully applied to Schumann resonance signals in (Sátori et al., 1996) 

and in (Sátori, 1996). For the phase extraction only, the method of PLL (phase-

locked loop) demodulation (Gupta, 1975) can be used, too. These methods are 

mathematically fully equivalent. If they are applied to “pure” input signal (free 

of noise and other non-harmonic wideband components), the results must be 

essentially the same. 

The fundamental property of all methods quoted above is the 

determination of the time-varying phase φ(t) of the oscillatory process in 

question and subsequent determination of its first time derivative f(t) as 

)/()2/1()( dtdtf                                                              (2) 

The slope of φ(t) curve indicates deviations of the instantaneous 

frequency around fest (see also Eq. 6). The method of complex demodulation 

seems to be most effective and easy to implement for the analysis of signals, 

which (1) consist of small number (< 10÷15) even highly damped harmonic 

modes, (2) their frequencies are not too close one another, (3) the signal can be 

corrupted by noise and other wideband non-modal components. 

As will be shown hereafter, the degree of noise present in signal (up to 

some margin) can influence only the rate of convergence if the iterative variant 

of complex demodulation is used. 

 

 
 

Fig. 2. The spectral “images” of original (simplified) and demodulated signal. Above is 

an illustrative example – the frequency spectrum of original signal. Below is the 

frequency spectrum of demodulated signal (before the low-pass filtering). 
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4. The complex demodulation method 
 

The method of complex demodulation (Childers and Pao, 1972; Ktonas and 

Papp, 1980; Sing et al., 1985; Hao et al., 1992; Myers and Orr, 1995; Gasquet 

and Wootton, 1997; Draganova and Popivanov, 1999) performs several steps 

for extracting every modal component. However, a very crude estimate (guess) 

of modal frequency fest must be made beforehand for each mode in question. 

The CD method consists of the following steps: 

a) the “preliminary filtering” or “prefiltering” of signal by a band-pass filter 

(relatively wide band) can enhance the contribution of the desired mode. 

This part of procedure is in some cases not necessary, as will be shown 

below; 

b) the “modulation” of signal sequence x(t) by a harmonic signal (cos and sin 

functions) of an estimated frequency fest, resulting in two new sequences 

)(sin)()(

)(cos)()(

ttxtz

ttxty

est

est
                                                            (3) 

         This and all similar operations are performed in digital domain. The 

frequency spectrum of the new “modulated” sequence reflects the 

spectrum of original signal, “folded” around the “modulation frequency” 

fest  at both sides. 

c) the “demodulation” – both y(t) and z(t) are low-pass filtered (up to cut-off 

frequency fLP ). Low-pass filter must have phase characteristic in pass-band 

< 0 ; fLP > as linear as possible. If the phase characteristics is markedly 

non-linear, the unwanted shift of resulting mode frequency can occur, 

which directly follows from Eq. (2). The resulting new sequences γ(t) and 

ξ(t) correspond to the original signal spectrum extracted from the 

frequency interval < ( fest – fLP) ;(fest +fLP) >  and then shifted by fest to lower 

frequencies (now centered around f = 0). 

          The simple graphical explanation of combined operations under b) and c) 

is given in Fig. 2. 

d) the “computation of the instantaneous amplitude and phase residuals”. Both 

sequences γ(t) and ξ(t) can be considered as real and imaginary 

components of analytic signal (complex sequence), amplitude of which is 

given by 
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2/122
)(()()( ttta                                                           (4) 

and phase by 

)(/)()( ttarctgt  .                                                             (5) 

Due to previous frequency shifting, this quantity is named „phase 

residual“. 

In Eq. 5, the “unwrapped phase” or “unwrinkled phase” is necessary to 

compute, i.e. the function arctg must be corrected to phase jumps at 

crossings of argument between I and II, or III and IV quadrants in both 

directions (Steiglitz and Dickinson, 1982; Abbas, 2005). 

e) the final step: the instantaneous frequency (in the Gabor sense) at a moment t 

is given by 

test dtdftf )/()2/1()(0  .                                                   (6) 

Therefore, if the rate of phase residual in time is positive, then f0  < f est and 

vice versa. 

An example of the time graph of phase residual of the SR signal 

computed by CD method is given in Fig. 3. 

Due to the low-pass filter, the spectrum of demodulated signals is 

severely limited with respect to the expected modal frequency and then with 

respect to sampling frequency of signal even more by relation  

fLP << f est  << f sampling. 

Therefore, the direct computation of phase residual for each signal 

sample will “infect” the result by numerical noise, which will be even amplified 

by computation of the time derivative. The possible remedy is in smoothing of 

computed residuals through suitable moving time window. This procedure can 

be considered as another low-pass filtering. 

The steps a) and c) can be realized by convolution of signal sequence 

x(t) with filter (band-pass or low-pass) unit impulse response h(t), i.e. {x(t)*h(t)} 

or alternatively by DFT and then by inverse DFT: computation of the signal 

spectrum X(ω) = Φ{x(t)}, then an ordinary product with filter frequency 

response H(ω) and, finally, the inverse DFT of such product: Φ –1 {X(ω) . H(ω)}. 

The symbols Φ and Φ 
–1 stand for the direct and the inverse discrete Fourier 

transform, respectively. Both algorithms are mathematically equivalent (taking 

into account that H(ω) = Φ{h(t)}). If the filters are prescribed by their unit 

impulse responses – we will show that this will be our case – the first algorithm 

is more advantageous in computing time, provided that time length of response 

h(t) in use would be in reasonable limits. 
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Fig. 3. (left) A sequence of 125 seconds of the vertical electric SR component, which is a 

part of a complete data block. Horizontal axis shows time in seconds, receiver output on 

vertical axis is in volts. (right): The time development of the smoothed phase residual 

(for the first four Schumann modes) computed by the CD method from the depicted 

signal. Horizontal axis is time in seconds, vertical axis in radians. The modulation 

frequency fest = 7.80 Hz; the phase residual rate of +1 rad.s-1 corresponds to frequency 

deviation approx. (–0.16 Hz). 
 

 

 
 

Fig 4. The smoothed amplitude residuals for the first four SR modes of the signal in Fig. 

3. Horizontal axis in seconds, vertical in relative units. Smoothing was made through 

moving half-cosine window 2.5 s wide.  

 

 

5. Amplitude residuals 

 

The amplitude residuals can give us a look on short-time variations of 

instantaneous modal amplitude. In Fig. 4 we present the amplitude residuals 

(smoothed by 2.5 sec. moving half-cosine window) of the signal given in Fig. 3 
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for the first four Schumann modes. The variations of modal amplitude are 

clearly detectable. These variations cannot be visually attributed to variations of 

envelope of the unfiltered total signal, see Fig. 3. 

Such second-scale amplitude variations can be observed (at filter 

outputs) in real time too. They can be surely attributed (Sátori et al., 1996; Verö 

et al., 2000) to short-time variations in global excitation picture of Schumann 

resonances – in other words, to short-time temporal and spatial variations of the 

global thunderstorm activity and/or the variations of the state of the lower 

ionospheric layers. Naturally, detection of fast modal amplitude variations (and 

modal amplitude variations in general) is far beyond the possibility of the 

traditional Lorentz functions fitting of data. 

 

 

6. The iterative use of complex demodulation 

 

The proper choice of the modulation frequency fest  is important for obtaining 

correct results. If the deviation of the modulation frequency fest  from the real 

central frequency of eigenmode peak in spectrum is too high (comparable with 

corner frequency of low-pass filter), then the output of low-pass filter would 

represent “false image” of modal line spectral contour. This represents the 

difficulty using the “one-shot” use of CD method. Fortunately, in case of SR 

signals, the coarse values of eigenmode frequencies are known (say, 7.8, 14.1, 

20.6 and 26.0 Hz for the first four SR modes). Nevertheless, the possibility of 

more precise determination is very desirable due to their daily, seasonal and 

interannual variations. 

Hao et al. (1992) and Gasquet and Wootton (1997) discussed the 

possibility of iterative use of CD procedure. The instantaneous frequency values 

are averaged over the complete signal sequence and subsequently this average 

value is taken as a new fest  and the complete run of complex demodulation is 

performed again. This may be repeated until some criterion is fulfilled, e.g. the 

difference in successive average frequency values, or the sum of squared 

frequency deviations at computation points (time samples), or simply after a 

prescribed number of iterations. 

The key points in this method are the fact of convergence itself as well 

as the speed of convergence. For this reason, many examples of input signal 

were tested (using exclusively our own code) and in most cases the convergence 

was achieved in a less number of iterations than had been prescribed. Exceptions 

occurred only if the input signal was greatly corrupted by wideband noise (in 

such a degree, that even the standard procedure of Lorentz function fitting gave 

no satisfactory results). 
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7. The use of signal prefiltering 

 

Most authors, e.g. Hao et al. (1992), Myers and Orr (1994), strongly 

recommend the preliminary filtering of signal before the complex demodulation 

is applied. If we can guess the peak frequency (f0) of the mode to be analyzed, it 

is possible to employ (digital) band-pass filter centered at f0. The choice of 

bandwidth remains somewhat intuitive, in some sense arbitrary. 

We have used (as an experiment) the convolution filters defined in 

(Verö, 1972) and applied in (Sátori et al., 1996) and (Sátori, 1996) to Schumann 

resonance signals. These filters are defined by their unit impulse response. Such 

definition facilitates the filtering operations in the computer code, see the end of 

Section 4. 

 

 

      
 

Fig. 5. (left) A selected part of unfiltered signal from Fig. 3 and (right) the same signal 

but prefiltered with the 1st Schumann mode filter (f0 = 7.80 Hz). The time interval covers 

the signal from 110 s to 120 s after the data block beginning. Horizontal axis is in 

seconds, vertical axis in left graph is in volts at true receiver output. The vertical axis in 

the right represents the receiver output diminished by constant attenuation of the band-

pass filter. Note the onset of a transient (Q-burst) at 114.67 s, which is consistent with 

maxima of amplitude residuals of all modes in Fig. 4. 

 

 

Fig. 5 illustrates the short 10 s part of SR signal (Fig. 3) prefiltered by 

the 1st mode convolution filter. At 114.67 s time, the transient event (Q-burst) 

occurred and the approximately exponential envelope of Earth–ionosphere 

resonator response is clearly seen, which could give a very coarse estimate of 

modal quality factor Q of the resonator.  
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Contrary to our expectation, the use of prefilters brought only very small 

changes in complex demodulation results and practically no improvement in the 

rate of convergence in the iterative procedure of the peak frequency 

determination. Some exception may occur for the 1st Schumann mode, as we 

have confirmed by analysis of CD process applied to raw (unfiltered) and 

preliminary filtered signals. For the sake of brevity, we do not quote this results 

herein. 

At the first sight, a simple comparison of the filtered (Fig. 5) and the 

unfiltered (Fig. 3) signal (in which no trace of harmonic component can be 

visible) must lead to the opposite conclusion. But – as we can see in Fig. 5 again 

– the modal harmonic component itself is “amplitude modulated” by chaotic 

(natural) signal, mostly in the frequency range ~ 0.5÷1 Hz. Such “modulation” 

reflects the temporal (and also spatial) variations of SR excitation by the global 

thunderstorm activity. The spectral profile of a modal line exhibits the 

permanent changes in the time scale much shorter than the length of every data 

block. 

The complex demodulation operation is equivalent to some “implicit” 

band-pass filtering with passband frequencies within < (fmode –f LP) ; (fmode +f LP) >. 

Taking into account f LP = ~ 0.8 Hz and about 2 Hz bandwidth of convolution 

prefilter, the non-efficiency of our prefiltering seems to be not very surprising. 

Due to these empirical facts, we did not employ the prefiltering operation in all 

following calculations. 

The reason for slightly increased „sensitivity“ of CD results in the case 

of the first (fundamental) Schumann mode seems to reflect the fact, that the 

spectral density of wideband low-frequency noise (of natural origin) has 

approximately (1 / f) character. Therefore, the fundamental (lowest frequency) 

mode must be the most susceptible to such noise influence. 

Concerning the choice of the low-pass demodulation filter corner 

frequency (Myers and Orr, 1994; Lee and Park, 1994), a very crude estimate 

tends to the value about half-width of spectral line of the eigenmode under 

question or slightly higher. From this point of view, our choice fLP ~ 0.8 Hz 

could be quite reasonable. It would be worth of recommendation to demodulate 

several signal sequences with various fLP and compare the results.  

 

 

8. The test results 

 

Many computer runs were performed as test ones. In all cases, the input signals 

were recordings of the vertical electric field intensity in Schumann resonance 

band (~ 5÷100 Hz) picked up at AGO Modra, Slovakia. 
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The rate of convergence in the iterative use of CD was dependent on the 

time length of signal sequence. If this sequence was of standard duration of data 

block in our measurement protocol, i.e. 327.68 seconds (65536 samples), usually 

the criterion of average frequency change under 0.001 Hz was fulfilled after 

15÷25 iterations. After splitting of data block into 16 sub-blocks (20.48 s each), 

the same convergence limit was achieved after 3÷5 iterations (for each sub-

block alone) in most cases. 

The time derivatives of phase (see Eq. 6) were computed by symmetrical 

five-point difference formula. In the case of full length (65536 samples) data 

block, the beginning and end of sequence were clamped by Hann window of 

1000 samples (5 s) length, for sub-blocks (4096 samples) the width of Hann 

window was reduced to 100 samples (0.5 s). 

The sampling frequency was in all cases 200 Hz. For demodulation, the 

digital 8th-order Butterworth low-pass filter was used, with corner frequency 

0.73 Hz, group delay in the pass-band 1.05 s, and the slope of amplitude 

response in the stop-band ~ 140 dB/octave. 

The amplitude and phase frequency responses of the low-pass filter are 

given in Fig. 6. 

 

 

 
 

Fig 6. Amplitude (left) and phase (right) response of the low-pass demodulation filter. 

Horizontal axis is frequency in Hz, vertical axis is the amplitude transfer function in dB 

and unwrapped phase in radians, respectively. 

 

 

Before processing of real Schumann signal sequences, we had executed 

many computations with artificial signals – amplitude and frequency modulated, 

like in Draganova and Popivanov (1999) – with very satisfactory results. For the 

sake of brevity, we do not present them here. 
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A very important question is the stability of the resulting computed 

frequency with respect to changes in fest  guess. In the ideal case, the result (for 
the same raw signal) should be independent of fest. In reality, some statistically 
insignificant shifts in demodulation results have occurred, if the fest  underwent 

changes. 
 

 

 
Fig. 7. The convergence graph for one complete real signal block. For a given fest  on the 

horizontal axis (stepped from 6.5 to 27.0 Hz in 0.5 Hz increments, the computed average 

frequency f0 at the end of iteration is shown. Condition for termination was the 

difference between successive f0’s values under 0.001 Hz. 

 

 

An interesting/illustrating computer experiment was made: the same real 

signal (complete 327.68 s long data block) was many times processed by the 

iterative CD code, for varying input values of fest  from 6.5 Hz to 27.0 Hz in 0.5 

Hz increments (total 44 values). The results, i.e. the computed average 

frequencies are shown in Fig. 7. The “plateaus” in graph clearly coincide with 

Schumann resonance modal frequencies. The interval of f est < 16.0; 17.5 Hz >  is 

especially worth mentioning. The iterative complex demodulation was “locked 

on” the parasitic component of signal at 16.67 Hz frequency (50/3). This 

component is often clearly visible in spectra as sharp narrow line, originating 

from driving frequency of electrified Austrian Railways (ÖBB), detectable at our 

observatory at a 55 km distance. The 16.67 Hz artifact is, in general, much more 

pronounced in magnetic field component, with significantly variable amplitude. 

The highest amplitude usually occurs in the second half of the night and at 

dawns. That is why the procedure of Lorentzian fitting has to cut out the 50/3 Hz 

peak (see a short horizontal line in spectrum in Fig. 1). 

The rate of convergence is documented in Fig. 8. The same input signal 

is processed by complex demodulation twice, at first, the procedure starts from 

fest = 7.20 Hz for the 1st mode and from 13 Hz for 2nd mode (lower curves) and 
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then the procedure starts from fest = 8.50 Hz and 15 Hz (upper curves). 

Computations for the 2
nd

 mode were terminated after the prescribed maximal 

number of iterations (30) in case of the upper estimate of fest = 15 Hz and after 25 

iterations in case of the lower estimate fest = 13 Hz. 

In some cases – when the input signal is grossly contaminated by noise 

over the whole sequence – the procedure shows no convergence and output 

value is slowly (and steadily) decreasing to unacceptable low values (under 1 

Hz). These cases can be predicted when observing the DFT spectra of signals. 

 

 

 
 

Fig. 8. The convergence graph for the 1st and 2nd Schumann resonance mode – input 

signal was full length block of data (327.68 s, i.e. 65536 samples). 

 

 

9. Results of iterative complex demodulation 

 

The method described above was applied to our Schumann resonance 

recordings. As an example, 4-day frequency variations of the first four SR 

modes are given in Fig. 9. 

The 327.68 s long data sequences (full-length blocks) were divided into 

16 sub-blocks (20.68 s long) and demodulated independently. Thus, there are 

240 x 16=3840 sub-blocks per day. The complex demodulation procedure was 

used using 3 different termination conditions: in the first procedure only one 

iteration was made (results are marked green/light grey), in the second procedure 

run the maximal number of iterations was set 5 (red/dark grey), and in the 3rd run 

the maximal number of iterations was set 10 (black). This colour code is the 

same in all following figures. A 0.001 Hz difference of the successive values of 

f0 was another termination condition, which was in many cases fulfilled earlier 

than maximal number of iterations. The fest  were set 7.8, 14.1, 20.6 and 26.0 Hz. 
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Fig 9. The results of complex demodulation of the four Schumann modes from 

December 1 – 4, 2006. For every day, 3840 points are given (240 data blocks each day 

are divided into 16 sub-blocks and every sub-block was processed independently). Points 

of various types and colors differentiate between demodulation procedure runs, which 

were limited to either 1, 5 or 10 iterations.  

 
 

It can be seen that the final frequency f0 of a sub-block after one iteration 

step does not differ from fest  by more than 0.3 Hz. A small fraction of procedure 

runs terminated after more than 5 iterations in which f0 reached values below 7.2 

Hz or over 8.5 Hz (for the 1st mode). The points showing significant ( >  1 Hz) 

deviations from average frequency in most cases correspond to data sequences 

heavily corrupted by noise and/or technogenic hum. As a rule, neither the 

Lorentzian fitting gives physically plausible results at these times. 

The average frequency f0 of a complete full-length block can be easily 

calculated as a mean of 16 values of all 16 sub-blocks. The results using all 3 

procedure runs are in Fig. 10. Naturally, these mean values are less scattered 

than frequencies determined for individual sub-blocks. 

Finally, the results of the complex demodulation method with maximal 

iterations set to 10 are compared with the results of Lorentzian fitting method, 
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see Fig 11. As the Lorentzian fitting is applied to the full-length blocks, the 

black points representing the complex demodulation are means of all 16 sub-

blocks (and they are the same as in Fig. 10). At the end of the 4th day, 

frequencies of the 1st mode decrease below reasonable value (below 7.2 Hz) 

what is likely caused by strong wind near the antenna site (trembling tree leaves 

strongly disturbed the SR signal). At these times, neither the Lorentz function 

fitting, nor demodulation procedure give results near the 1st mode frequency. 

 

 

 
 

Fig. 10. Results of the 1st and 2nd mode demodulation of 327.68-second measured 

sequence calculated as a mean of all 16 sub-blocks. Points of different type and colors 

differentiate between demodulation procedure runs, which were limited to either 1, 5 or 

10 iterations. The axes and the scale are the same as in Fig. 9. Naturally, these values are 

less scattered than frequencies determined for sub-blocks. 

 

 

11. DFR derived by use of CD method 

 

One of the most principal goals of SR analysis is the determination of average 

DFR’s (Daily Frequency Ranges) of the SR modes for successive months of 

years. The DFR (for a given month) is the difference between maximal and 

minimal value of monthly averages taken at the same time (hour and minute). It 

has been shown that these quantities have direct relations to the geometrical 

(angular) area of the global thunderstorm foci on the Earth’s surface 

(Nickolaenko and Hayakawa, 2002; Ondrášková et al., 2011). Therefore, the 

more precise determination of average DFR’s is of great interest. The 

observations and also computations have justified (Sátori et al., private 

communication) that a non-negligible systematic differences exist between 

average monthly DFR’s determined by the Lorentz function fitting of 

eigenmodes (traditional approach) and those computed by the complex 

demodulation (or possibly other non-Lorentzian) methods. 
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Fig. 11. Modal frequencies (black points) derived by iterative use of complex 

demodulation (with a limit of 10 iterations) compared with Lorentz functions fitting 

(violet/grey points) in the same time interval as in Fig. 9. At the end of 4th day, both 

methods give results below the reasonable values (below 7.2 Hz), which is likely caused 

by strong wind near the antenna site.  

 

 

In an ideal case we have 10 data blocks per hour, therefore 240 per day 

multiplied by 30 (31) days, i.e. 7200 (7440) full data blocks from one particular 

month. The computations were made for each 20.48 s sub-block (4096 samples 

each), therefore for 240 x 16 = 3840 per day or 115 200 (119 040) sub-blocks per 

month. An average f0 of each 7200 or 7440 blocks is calculated taking into 

account only physically reasonable values of f0 of individual sub-blocks. Then a 

monthly mean value for a given time of day is calculated as a simple average of 

f0 values from all 30 or 31 data blocks taken at the same time (hour and minute). 
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Fig. 12. Daily variations of the 1st and 2nd Schumann mode resonance frequency 

averaged over one month (January 2007). Individual curves show daily variation 

determined by complex demodulation procedures, when number of iterations was 

limited to 1, 5, and 10, respectively, and by the Lorentz function fitting. The initial guess 

value of fest  was taken 7.80 Hz and 14.1 Hz for the 1st and 2nd mode, respectively. 

Results of sub-blocks outside a reasonable interval of 7.2 – 8.5 Hz and 13–15 Hz have 

been discarded.  

 

 

Daily variations of the central frequency of the 1st and 2nd SR modes 

obtained by the Lorentzian fitting and by the CD method can be seen in Fig. 12. 

It is worth mentioning that resulting f0  after maximally 5 or 10 iterations exhibit 

very small differences, except the small number of cases when signal sequence 

was grossly contaminated by noise and the computed f0 after 5 iterations 

permanently goes down to unphysical values. Occasionally, the f0 after the 5th 

iteration could be still > 7.2 Hz limit (and therefore acceptable), but f0  after final 

10th iteration decreased slightly under 7.2 Hz and was discarded. Just for this 

reason, the curve f0 for maximum10 iterations is for all times by a tiny value of 

about 0.015÷0.02 Hz over the curve f0 for maximum 5 iterations. As can be 

seen, the mean daily variation is less significant when results of 1 iteration are 

used. Using the iterative complex demodulation method, the mean daily 

variation as well as the DFR are comparable with those obtained by the Lorentz 

function fitting method in case of the 1st SR mode. But the situation is quite 

different for the 2nd mode (Fig. 12) – the results of Lorentz function fitting 

(violet/dotted curves) are much more different from complex demodulation ones 

(red or black curves). Moreover, the daily variation of the Lorentz fitting 

resembles the amplified variation of the complex demodulation results. 

For typical monthly averaged DFR’s for the first three Schumann 

resonance modes see (Ondrášková et al., 2011). The graphs herein were 

obtained by the “old” method of modal frequency computation (the fitting of 
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signal DFT spectra by the sum of Lorentzians). These graphs cover the interval 

from October 2001 (start of regular monitoring at our observatory) up to the July 

2009, inclusively. The systematic lowering of modal frequencies from year to 

year (clearly seen in graphs therein) is in connection with the phase of solar 

activity cycle.  

 

10. Conclusions 

 

The complex demodulation method was applied to reveal frequency and 

amplitude variations of Schumann resonance modal spectral peaks. It was found 

that the iterative variant of the CD method should be used since it is less 

dependent on initial guess of demodulation frequency. Therefore, based on 

results of many computations, this method seems to be superior with respect to 

“one-shot“ (single iteration) complex demodulation, as well as with respect to 

in-phase and quadrature-phase filtering method. The computation complexity of 

the iterative variant is practically not greater with respect to methods quoted 

above.  

This method seems to be clearly superior compared with traditional 

Lorentz functions approximation. Taking into account the physical background, 

this method shows to be more natural approximation of the reality then 

traditional Lorentz functions approximation. 

The iterative complex demodulation has been illustrated on processing 

of many real Schumann resonance signals recorded at the Astronomical and 

Geophysical Observatory of Comenius University in Modra, Slovakia. 

An important question is how to apply CD method. There are two 

possibilities, either CD is applied on the whole (full-length) 327.68 s long SR 

records or it is applied on short sub-blocks. Results of the latter possibility are 

presented here. Troubles arise from records disturbed by local meteorological 

conditions when output of measurements or their parts are strongly saturated. 

Such outputs or their parts can give unphysical values of the searched central 

peak frequency. The approximation of SR peaks by Lorentz functions was 

applied on the whole 327.68 s long SR records and unreasonable values were 

excluded from the obtained values, e.g. only values from an interval <7.2; 8.5> 

were selected for the first SR mode. Partially saturated record sometimes gave 

reasonable values but they could contribute to the scatter of the values. The 

advantage of CD method applied on the short sub-blocks lies in the fact that 

“bad” values of the frequency from saturated sub-blocks can be discarded and 

the scatter of the frequency values is decreased. This may be the main reason for 

the differences between the monthly mean daily variations determined by the 

Lorentzian fitting and by the CD method applied on the sub-blocks presented 
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here, see Fig. 12. From this point of view, it can be concluded that CD method 

should be applied by iterative procedure and on the short sub-blocks evaluating 

each sub-block individually. 

The computations by complex demodulation method were executed 

using our own code. On ordinary PC, the processing time for one complete day 

of raw data (which represents about 15.73 millions of samples) was 

approximately 2 hours to find all four first SR mode central peak frequencies. 

This time is comparable with the time spent by the Lorentzian fitting method to 

find modal peak frequencies, amplitudes and Q-factors of the first four SR 

modes.  
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