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Abstract

A linear stability analysis of convection arising in a horizontal plane layer rotating about
the horizontal axis and permeated by a homogeneous horizontal magnetic field perpendic-
ular to the rotation axis is performed. Resulting horizontal convective rolls are inclined
to the magnetic field at an angle dependent on the dimensionless numbers − the Elsasser,
Ekman and Roberts numbers, and moreover on the anisotropy parameter, the ratio of hor-
izontal and vertical diffusion coefficients (which are the viscosity and thermal diffusivity;
magnetic diffusivity is considered isotropic).

Two types of anisotropies, SA and BM , are considered and compared with the
isotropic case of diffusion coefficients. In the stratification anisotropy, SA, of the Sa and
So types, diffusivities in the horizontal directions are, respectively, smaller and greater
than the vertical ones. In the BM anisotropy (Braginsky and Meytlis [2]), the diffusivi-
ties in the directions of rotation axis and magnetic field - in the horizontal directions are
greater than in vertical direction, thus identically as in So type anisotropy. Results of
this H case, the model with the horizontal rotation axis, are compared with the V case of
a similar model with the vertical rotation axis. The modes of instabilities are much more
sensitive to viscosity and various anisotropies in the H case than in the V case.

Results indicate that the effects of anisotropic diffusivities on the Earth’s core mag-
netoconvection and geodynamo processes should be studied more thoroughly in simpler
models than is usually done.

Key words: anisotropic diffusion coefficients, rotating magnetoconvection, horizontal
rotation axis, Earth’s core, geomagnetic field

1. Introduction

In the geodynamo problem the basic MAC dynamic balance corresponding to the
Magnetic, Archimedean and Coriolis forces can be sensitively affected by diffusion pro-
cesses variously weakening the individual forces. Thus magnetic and thermal diffusion
weaken the M and A forces, respectively, while viscosity weakens the C force, which can
lead to a new balance of the forces with the possibility of instabilities completly different
from those in the diffusionless case. In recent years geodynamo computational simulations
(see e.g. [11]) have paid close attention to the dependence on various Prandtl numbers
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Preprint submitted to Elsevier October 21, 2013

Igor
Typewritten Text

Rectangle



representing ratios of different diffusion coefficients or characteristic times of diffusions.
Despite the fact that some diffusion coefficients are unrealistically high, e.g. viscosity,
due to numerical limitations, results of the simulations are of great heuristic significance
[11, 13]. Experiments, better approaching some parameter values of the Earth’s core
conditions, are also significant in the sense of geodynamo problem [12, 1]. Therefore, the
study of more complicated anisotropic diffusion coefficients is useful.

It is believed, due to the highly developed convection in the Earth’s core, that the
core is in a turbulent state [2, 11, 22] and turbulent1 transport of momentum and heat
is more effective when compared with molecular transport. Turbulent transport of the
magnetic field is not as effective, because the molecular magnetic diffusivity, η, based
on high electrical conductivity of the Earths outer core, used in geodynamo models is
sufficient to explain basic features of the geomagnetic field. Thus, the turbulent magnetic
diffusivity, ηT , is less than or, at most, comparable to η, while the turbulent diffusion
coefficients, νT and κT , are much greater than their molecular counterparts, ν and κ.
The effective diffusivities, well represented by νT , κT and η (or η + ηT ), are supposed
to be of the same order of magnitude [11]. But due to the effect of the Lorentz and
Coriolis forces the turbulence is highly anisotropic, since turbulent eddies are deformed
into a shape elongated in the direction parallel to the magnetic field and the rotation
axis. Since turbulent small-scale eddies are diffusers of momentum and heat, the effective
viscosity and thermal diffusion is also anisostropic. Braginsky and Meytlis [2] showed that
the momentum and heat should diffuse parallel to the rotation axis and in the direction
of the prevailing magnetic field much more effectively than in the direction perpendicular
to both. Anisotropy of magnetic diffusivity is not considered in this paper, because it is
possible that the turbulence affects the effective magnetic diffusivity only negligibly. Due
to the fact that turbulent eddies are too small to be resolved with the current generation of
computers, parameterization of subgrid scales is usually used. Firstly, it was a trick with
hyperdiffusivities (see e.g. [11]) which overcame the numerical problems in geodynamo
simulations. However, the hyperdiffusivities with no physical background are a rough
analogue of anisotropy in the sense that viscosity is greater in horizontal directions (in
a spherical surface) than in the vertical (radial) direction, which roughly resembles the
anisotropy of diffusion coefficients in oceanic surface waters, in which values in horizontal
directions exceed those in the vertical direction by up to several orders of magnitude; see
e.g. [6]. Of course, this stratification anisotropy, is different from the results of Braginsky
and Meytlis [2].

Therefore, in [24] two different types of anisotropy were introduced: stratification
anisotropy, SA, analogous to hyperdiffusivity and BM anisotropy based on [2]. SA is
determined by the single vector gravity g and BM anisotropy by the pair of vectors Ω0

and B (angular velocity and magnetic field). Both anisotropies in [24] were, possibly, of
the simplest form in which viscosity and thermal diffusion are expressed by a diagonal
tensor (of order two represented as a 3×3 array) with only two different values of its three

1Braginsky and Meytlis [2] focused attention on a source of turbulence different from classical turbu-
lence due the buoyancy in unstably stratified fluids. In this so-called convectively generated turbulence,
eddies arise on all space scales, but their persistence is strongly limited. Contrary to classical turbulence,
generated by shear stresses, in which the energy is transported from larger to smaller eddies, here due to
the buoyancy the eddies of all possible sizes arise. They live independently with no mutual effects among
the eddies of other sizes.
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components; e.g. νxx = νyy ̸= νzz, κxx = κyy ̸= κzz for the SA anisotropy with preserved
horizontal isotropy. A simple measure of anisotropy, convenient for both SA and BM
ones, was defined by the ratios α = νxx/νzz = κxx/κzz and was called the anisotropy
parameter; see the last column in Table 1. It is used also here; see the last of (7).

The SA anisotropy, determined by the vertical direction, is studied in this paper. If the
diffusion coefficients in the horizontal directions are smaller than in the vertical direction,
α < 1, then SA anisotropy is called the stratification anisotropy of the atmospheric type
and is labeled Sa. Contrary, if α > 1, then we speak of stratification anisotropy of the
oceanic type, labeled So [24]. Here the So anisotropy can be also considered as BM one.
Due to the orientations of the rotation axis and the magnetic field in horizontal directions
the definition of the BM anisotropy and of the SA one for α > 0 is now formally equal.
The clear distinction of SA and BM anisotropies was possible in [24], because of the
vertical rotation axis. Henceforth, we shortly distinguish the H and V cases with the
horizontal and vertical rotation axis studied here and in [24], respectively. In both cases,
H and V , a homogeneous horizontal magnetic field is considered.

One might wonder whether the effects of various anisotropic diffusion coefficients on
the geodynamo or at least magnetoconvection are known. There is, for instance, a pilot
study of an example of the anisotropy influence on operation of the intermediate dynamo
in [7]. The comprehensive attempt to include the effects of anisotropic thermal diffusion
in geodynamo models is described by Phillips and Ivers (see e.g. [20]). The influence
of this anisotropy on the rotating magnetoconvection is presently not sufficiently known,
but there are attempts in [3, 24, 14] and also here. The magnetoconvection studied here
is of a large scale for a majority of geophysically realistic input parameters, while small
scale instabilities2 responsible for this anisotropy are not the central interest in our study.

The basis of the present H case study is the approximation in [21], ν ≫ κ ∼ η,
i.e. comparable coefficients of thermal and magnetic diffusion, κ and η, respectively,
but significantly larger viscosity, ν. It ignores inertial oscillations as well as torsional
oscillations, which gives us the chance to focus attention mainly on the MAC dynamics
neglecting also the nonlinear inertial force u · ∇u here and in [4, 21, 24], which is typical
in modeling the Earth’s core turbulence [11, 13, 22].

Our approach to the study of the anisotropy of diffusion coefficients (see e.g. [24] or this
paper) is in principle different from the currently prevailing ones. For instance, in [7] and
[20], the influence of anisotropic diffusion coefficients on the dynamo is studied, while in
[19], analogically like in [2], properties of turbulent diffusion coefficients are derived from
a model of rotating magnetoconvection with prescribed isotropic diffusion coefficients.
In [2], the linear stability analysis is not concentrated on marginal instabilities but on
those, which have the fastest exponential growth rate of amplitudes. In [2] and [19] the
conditions for the onset of convection are, respectively, studied in the whole space or in a
box on the surface of a sphere, thus in a geometry different from our plane layer. In the
latter case [19], dependence on the latitude is also studied.

It is not only the geometry (the horizontal plane layer) which differs from the above
mentioned simplifications or from the spherical geometry attempts [20] or our emphasis
on the marginal modes that make our approach so different. It is that we suppose a priori

2We hope that not only the advanced turbulence, but even any regular flow of the smaller space and
time scales can be parameterized to acquire “turbulent” diffusion coefficients as input parameters to
study the onset of instabilities of the greater scales.
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paper(s) Donald&Roberts[7] Phillips&Ivers[14] [24]+this paper
model properties V +H case

problem dynamo convection convection
geometry sphere sphere plane layer
coordinates cylindrical, sφz cylindrical, sφz Cartesian, xyz
z axis rotation axis rotation axis vertical || g

anisotropy parameter β =
1− α

1 + α
ζ =

1

α
− 1 α =

κxx
κzz

(
=
κss
κzz

)
Rayleigh number ∝ 1/(κzz + κss) 1/(κzz + 2κss) 1/κzz and 1/κxx

anisotropic diffusivities κ κ κ,ν
isotropic diffusivities ν, η ν, η η

magnetic field Bφ(s, z) φ̂ no field BM ŷ, BM = const

Table 1: Comparison of properties of setups in approaches to anisotropic diffusivities in [7, 14, 24] and in
this paper; convection = rotating convection and rotating magnetoconvection in [14] and [24], respectively.
In both V and H cases with the rotation axis in vertical and horizontal directions, respectively, two
definitions (8) of the Rayleigh number are applied.

anisotropic diffusion coefficients as in [7] in the case of the dynamo or in [14] in the case
of rotating convection or in [24, 3] in the cases of magnetoconvection, and then we study
conditions for the onset of convection. The above mentioned studies [2, 19] or many other
rotating magnetoconvection studies contemplate only isotropic input diffusivities based
on molecular values. In our approach the anisotropic diffusivities would be a result of
some parameterization of turbulent small scale flows, but determined by the dynamic
MAC balance. Then our choice of effective diffusivities corresponding to the turbulent
anisotropic diffusivities is analogous to the usually used turbulent isotropic diffusivities
in various dynamo or magnetoconvection models [11], in which the turbulent flow - the
source of the parameterization - is not considered.

One of the interesting results in the V case [24] is the sensitivity of the marginal
convection to the SA anisotropy. For example, So anisotropy increases and Sa decreases
the horizontal dimension of the steady rolls. But, the opposite is true for some non-
stationary modes. However, the convection is more sensitive to the BM anisotropy,
because the horizontal isotropy of the diffusion coefficients is broken in that case. In the
SA case it is not broken.

The main inspiration and motivation for the paper are in [7] and [14], see Table 1. Don-
ald and Roberts [7] inspired us to study magnetoconvection models with input anisotropic
diffusion coefficients. In a rotating convection model in a sphere, Ivers and Phillips [14]
confirmed our results for a horizontal plane layer rotating about the vertical axis, pre-
sented in conferences, e.g. SEDI 2004 and 2006 in GaPa and Prague, but see [24, 3]. This
confirmation for properties of arising instabilities in our case V [24] was only partial. The
monotonicity of the critical Rayleigh number vs the SA anisotropy cases contradicted in
[14] and [24] in the sense that in our case the Sa anisotropy decreased the critical Rayleigh
number, Rc, while in [14] it increased Rc, and oppositely the So anisotropy decreased and
increased Rc in [24] and [14], respectively. We have supposed that the main reason for this
contradiction is in various geometries, i.e. the spherical in [14] and plane layer geometry
in [24]. Therefore, it has motivated us to solve the magnetoconvection model in the H
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case of a plane layer. However, it seems (see Table 1) geometry is not the only factor
that determines the differences among [7, 14] and [24]. It can also be the definition of the
Rayleigh number, as indicated in this paper.

We partially follow the H case models in [8, 9, 10] and [17]. In the rotating horizon-
tal plane layer permeated by a homogeneous horizontal magnetic field we consider the
horizontal rotation axis perpendicular to the magnetic field and we use a linear stability
analysis with marginal instabilities in the form of horizontal rolls. We compare the H
and V cases by the approach in [21] in which unlike [8], attention is focused on regime
diagrams determining regions of preference of various modes of convection for different
input parameters, e.g. Λ, Ez and qz defined in (7). This comparison of the H and V cases
is made only for the SA anisotropy, similar to how it is done in [4] for the isotropic case,
α = 1.

Our attention to the H case and the comparison of both cases, H and V , is not
motivated only by various delicate dynamics and balance of the basic forces, M, A and
C in various rotating conditions. The main motivation in the study is the role of various
diffusive processes, which can compete with one another [23]. This competition is very
complex, in particular if the anisotropic diffusion coefficients are considered [14, 24, 3, 25].

The structure of the paper is as follows. The setting of the model is given in Section 2.
The basic equations are discussed and the dispersion relation derived using a linear sta-
bility analysis is in Section 3. Further analytical methods of solution and solutions for
steady and non-stationary convection are contained in Section 4. Numerical results and
comparison with analytical derivations are discussed in Section 5. The most important
results are summarized and the paper concluded in Section 6.

2. Model

The basic state with the imposed homogeneous magnetic field in the y−direction and
with the rotation axis in the x−direction is considered in the H case. This configuration
considers gravity in the vertical z−direction with a rough analogy to the equatorial re-
gions of the Earth’s core [4]. In this configuration of the basic state, all the directions
determining the three basic forces (M, A, C) are mutually perpendicular.

That is why it is important to investigate how anisotropy of diffusion coefficients
influences the balance of these forces, how conditions for formation of the convection
change, and how the space and time structure of the convection itself are changed. The
anisotropy parameter α is defined as in [24]; see Table 1 and the last of (7).

3. Basic equations

The H case model is described with the following fundamental equations in the lin-
earized and dimensionless form

Ro
∂u

∂t
+ x̂× u = −∇p+ Λ(∇× b)× ŷ +Rϑẑ+ Ez∇2

αu, (1)

∂b

∂t
= ∇× (u× ŷ) +∇2b, (2)

1

qz

∂ϑ

∂t
= ẑ · u+∇2

αϑ, (3)

∇ · u = 0, ∇ · b = 0. (4)
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Figure 1: Model of the rotating magnetoconvection with the basic homogeneous horizontal magnetic field
in an infinite horizontal unstably stratified layer with the vertical temperature profile T̃0(z̃) and rotating
about a horizontal axis perpendicular to the magnetic field. Here in the H case the arrow of the vector
Ω is directed towards the reader, while in the V case Ω is antiparallel to g.

In comparison to the V case, the only change is in the Navier-Stokes equation in its’
Coriolis term x̂× u (here the horizontal rotation axis in the x−direction is considered).

The BM and SA anisotropies in the H case have a formally equivalent mathematical
formulation, that is why the anisotropic Laplacian in the terms Ez∇2

αu and ∇2
αϑ in (1)

and (3) now has the single form

∇2
α = [(1− α)∂2zz + α∇2] (5)

and not two distinct forms as in the V case; see (8-10) in [24].
If we set the anisotropy parameter α equal to one, then we get, from the anisotropy

versions of these diffusion terms, the commonly used forms E∇2u and ∇2ϑ. In the
equations (1–4) dimensionless variables are used and they are defined in the usual way

z → dz, t→ d2

η
t, u → η

d
u, p→ 2Ω0ηρ0p, b → BMb, ϑ→ η∆T

κzz
ϑ, (6)

where d and d2/η are the typical length and characteristic time (magnetic diffusion time).
So the dimensionless numbers appearing in the equations (1–3) are defined as in the case
V [24], i.e.

Ro =
η

2Ω0d2
, Λ =

B2
M

2Ω0ρ0µη
, Ez =

νzz
2Ω0d2

, qz =
κzz
η
, α =

νxx
νzz

=
κxx
κzz

, (7)

where we have Rossby, Elsasser, Ekman, and Roberts numbers and an anisotropy param-
eter. ρ0, p, µ and η are density, pressure (with a contribution from the centrifugal force),
magnetic permeability and diffusivity, respectively. Further, two Rayleigh numbers,

R =
αTg∆Td

2Ω0κzz
and Reff =

αTg∆Td

2Ω0κxx
=
R

α
, (8)

are introduced, where the modified Rayleigh number R is the same as in [24] and where αT

is the thermal expansion coefficient. One can wonder, whether R or the effective Rayleigh
number Reff is more convenient for understanding the marginal convection onset. It is
discussed in subsection 5.3, but this paper deals mainly with the Rayleigh number defined
by the first of (8).

We focus our attention on instabilities of MAC wave type as in [4, 8, 24], and therefore
we consider the limit ν ≫ κ ∼ η, due to which the Rossby number Ro in (1) is negligible.
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In the next procedure we will use the fact that disturbances of the magnetic field b and
the velocity u can be divided into toroidal and poloidal parts in the form

u = a−2 [∇× (∇× wẑ) +∇× ωẑ] , b = a−2 [∇× (∇× bẑ) +∇× jẑ] , (9)

since b and u are solenoidal. Disturbances (w, ω, b, j and ϑ) have the form

f(x, y, z, t) = ℜe [F (z) exp(ilx+ imy) exp(λt)] , (10)

where l and m are the horizontal components of the wave vector, a =
√
l2 +m2 is the

horizontal wave number (18) and λ is the complex frequency (λ = iσ). Next, the curl
operator and the double curl operator are applied to the Navier-Stokes equation. The
curl operator is also applied to the induction equation and, after substitution of the
disturbances (w, ω, b, j, and ϑ) into these equations (∇×NS, ∇×∇×NS, IE, ∇×IE)3 and
the heat conduction equation, and considering only the ẑ components, the following set of
ordinary differential equations for the unknown functions F (z) = W (z), Ω(z), B(z), J(z)
and Θ(z) is obtained

[EzDα −Roλ]Ω + ilW + imΛJ = 0, (11)

(D2 − a2) [EzDα −Roλ]W − ilΩ + imΛ(D2 − a2)B = a2RΘ , (12)

(D2 − a2 − λ)J + imΩ = 0, (13)

(D2 − a2 − λ)B + imW = 0, (14)

(Dα − λ/qz)Θ +W = 0, (15)

where the operator D means d/dz and Dα = D2 − αa2. In the next formulas and
computations the Rossby number (see Ro in (11, 12)) is already considered to be zero.
When comparing this equation system (11−15) to the similar system for the V case, we
can see that the difference is only in two terms, ilW and −ilΩ , in the equations (11)
and (12), respectively. Corresponding terms in the V case are DW and −DΩ . Now, the
operator Dα has the single form Dα = D2 − αl2 − αm2, unlike the V case, where it has
two different forms depending on the type of anisotropy, SA or BM . But now Dα reflects
only the horizontal isotropy, which was violated in the V case for the BM anisotropy. We
consider the simplest boundary conditions at z = −1/2, 1/2, i.e. the mechanically free
and thermally and electrically perfectly conductive boundaries

W = D2W = DΩ = Θ = B = DJ = 0. (16)

Applying the same algebraic procedures as in the V case and using our limit ν/η → ∞,
we derive a very similar dispersion equation

Ra2
qz(K

2 + λ)

(qzK2
α + λ)

=
K2[Ez(K

2 + λ)K2
α +m2Λ]2 + l2(K2 + λ)2

Ez(K2 + λ)K2
α +m2Λ

, (17)

where K2 = π2 + a2 and K2
α = π2 +αa2. The difference, compared to the V case is in the

last term in the numerator of the right hand side, which has changed in the following way

π2(K2 + λ)2 → l2(K2 + λ)2.

3NS and IE are the Navier-Stokes and the induction equation, respectively.
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The main task of our investigation is to find the preferred modes, while, from the very
beginning, we will concentrate on the marginal modes, for which ℜe(λ) = 0. The first
step is to find, for all l and m, modes in the form of stationary convection with ℑm(λ) = 0
or overstability with ℑm(λ) = σ ̸= 0. We will label the Rayleigh number of stationary
convection Rs and the Rayleigh number for the overstability Ro. The next step is to find,
for both convection types (for the given Ez, Λ and qz), a critical mode, i.e. l and m, such
that Rs(l,m) and Ro(l,m) are smallest. The last step is to denote, which of Rs

c and Ro
c

is less and, therefore, preferred.

4. Modes of stationary and non-stationary convection in the form of rolls

Convection in the form of stationary and nonstationary horizontal rolls investigated
here in the case H as well as in the case V [21, 24], is clearly described by the two
components, l and m, of the horizontal wave vector. The pair, l and m (see (10)), can be
substituted by another pair,

a = (l2 +m2)1/2 and γ = tan−1(m/l), (18)

the magnitude of the horizontal wave vector, and the angle between the rolls and the basic
magnetic field in the y−direction (see Fig. 2), respectively. The vector (l, m) determines
the orientation of convective rolls (the rolls are perpendicular to the vector) and in the case
of nonstationary convection, this vector determines also the direction of propagation of
the wave [4]. If l = 0, then we speak of cross rolls, since they are oriented perpendicularly

-

6

6

C O P

B

x

y

exp(imy)
-

6

6B

x

y

exp(ilx+ imy)
-

6

6B

x

y

exp(ilx)

γ

Figure 2: Different orientations of convective horizontal rolls. γ = tan−1(m/l) is the angle between the
axis of the rolls and the magnetic field B. Three sets, {SC and OC}, {SO, OC′ and OO} and {P} of
stationary or non-stationary modes, correspond to the C, O and P rolls, respectively, in the H case. In
the V case the OC′ modes do not arise.

to the basic magnetic field. The rolls withm = 0 are called parallel. If both wave numbers
are nonzero, then we speak of oblique rolls. Both the Coriolis and Lorentz forces try to tilt
the convection rolls into the direction of the rotation axis or the direction of the magnetic
field, respectively. The cross rolls can be viewed also as the rolls for which the Coriolis
force has played the dominant role, because the rolls are tilted exactly parallel to the
rotation axis (i.e. perpendicularly to the magnetic field). There is the result that motions
in the rolls do not feel the Coriolis force. For the parallel rolls the Lorentz force has played
the dominant influence with rolls tilted parallel to the magnetic field, i.e. the motions
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in the rolls finally do not feel the Lorentz force. In the case of oblique rolls the Lorentz
and Coriolis forces are in a balance in which the convective rolls are oriented at a certain
angle towards the magnetic field and rotation axis. By combination of the three possible
orientations of rolls with stationary (steady) and nonstationary (overstable) convection,
5 (+1) different modes of convection are defined. We will name them, using labeling and
names according to Roberts and Jones [16, 21], the P, SC, SO, OC and OO modes4. P
modes are never overstable, similarly to the V case, because λ in (17) is a real number.
The OC′ modes are special OO modes, the rolls of which are almost perpendicular to the
magnetic field. The SO, OO, OC’ and OC modes are named by Eltayeb [9] the steady
oblique, old oblique, new oblique (or the modified oblique mode) and the magnetic roll
mode, respectively. In [10] the names of modes are adapted to their dynamic background,
“the modified magnetic mode” (= OC’) and “the aligned magnetic modes”, steady (SAM
= SC) or overstable (OAM = OC). The stationary (P, SO and SC) and nonstationary
(OO and OC) modes occur in both compared cases, V and H, while the nonstationary
OC′ modes only in the H case for all investigated values of the anisotropy parameter α.

The dispersion equation (17) is for the most common initial layout of the problem.
Two extreme cases can occur in the minimization of the Rayleigh number R = R(l,m),
the P modes or the C modes, where m = 0 or l = 0, respectively. The zero value of one
component is one condition in determination of the minimum R. The second condition is
given by the derivative ∂R/∂a2 or ∂R/∂ã. Henceforth, we use

ã = a2/π2 = l̃ + m̃, with l̃ = l2/π2, m̃ = m2/π2. (19)

The role of C modes (SC and OC modes in comparison with other modes) is more
significant in the H case than in the V case. Further, the OC′ modes are more similar
to the C modes because of their almost colinearity with the rotation axis. The H case
can be regarded as an approximation for the equatorial regions of the Earth’s core and
therefore the C and OC′ modes roughly correspond to rotating convection in spherical
geometry5 or in the Busse annulus. Minimizing for rolls of the general tilt with l ̸= 0 and
m ̸= 0 needs to compute one more partial derivative; e.g. ∂R/∂l̃ = 0 and ∂R/∂m̃ = 0.

4.1. Stationary modes

We can see immediately from (17) that stationary modes with λ = 0 are independent
of qz. Due to (11, 12) the stationary convection is also independent of the Rossby number
Ro. Thus, the approximation Ro = 0 does not influence the properties of the SC, SO and
P modes, because they are the same for all values of qz and Ro (or Ro/E). This fact gives
the chance to compare the results in this section with the linear stability study of the
model in [17]. The difference between the two models is in the approximating limiting
cases, qz → 0 (i.e. κ ≪ η) and E/Ro → 0 (i.e. ν ≪ η), in [17] and ν ≫ κ and ν ≫ η in
this paper, respectively. Therefore, the resulting properties of stationary convection are
the same in both models, because the stationary modes are not sensitive to the Prandtl

4The labeling for regimes of convection of P, SC, SO, OC and OO modes or rolls comes from the
names parallel, steady cross, steady oblique, overstable cross and overstable oblique, respectively.

5Many properties of axially-aligned columns in spherical geometry and the C and OC′ rolls in our
H case are similar. One of the reasons for some non-similarities can be unboundedness of the plane
layer with infinite length of the rolls contrary to the finite volume of the sphere or spherical shell. A
comprehensive analysis of modes in the spherical geometry is e.g. in [13].
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numbers, qz and E/Ro, i.e. the Roberts and magnetic Prandtl number. By the way, the
SC, SO and P modes are named the axial, oblique and zonal modes, respectively, in [17].
In the following relations the Rayleigh number Rs for stationary convection is expressed
as a function of the input parameters, Ez,Λ and α, and the horizontal wave numbers, l
and m, therefore Rs = Rs(Ez,Λ, α; l,m). We introduce also, for a clear comparison of the
isotropic and anisotropic cases, the auxiliary variable6

lα =
K2

α

K2
=
Aα

A
=

1 + αã

1 + ã
= lα(ã, α). (20)

Using tedious algebra, we derive from (17) at λ = 0

Rs = π lα
K3

a2

{
Cα +

l̃

Cα

}
= π2 lα

A3/2

ã

{
Cα +

l̃

Cα

}
, (21)

Cα =
Ez

π
lαK

3 +
Λm2

πK
= π2EzlαA

3/2 +
Λm̃

A1/2
with A = 1 + ã. (22)

The formulas (21, 22) correspond to (18ab) in [17] and to (5.3, 5.4) in [8] and one can see
that after some algebra they are coincident (1α = 1 and Cα = C for α = 1).

Minimizing Rs with respect to the variables ã and Cα (and not to l̃ and m̃ in a
complicated way) we get at ε = π2Ez/Λ two equations

(ã+ ε lαA
2)A = Λ2(m̃+ ε lαA

2)2 and m̃ =
[1− αã(1 + 2ã)] [ã+ A(1 + αã)ε]

1− αã2
(23)

for the two unknowns m̃ and ã, determining the critical horizontal wave vector (lc,mc),
but only for SO modes. Consequently the critical Rayleigh number for SO modes,

RSO
c = π2lα

A
3/2
c

ãc

{
2Cc −

A
1/2
c

Λ

}
= RSO

c (ãc, Cc), (24)

is added to the relations for the critical wave numbers (23), where lα(ã) and Cα(ã) are
expressed for ãc (Cc = Cα(ãc)).

Numerical computations show that, at constant Ez, the SO modes gradually rotate
from being perpendicular to the magnetic field to being increasingly parallel to it with
increasing Elsasser number, Λ, and that at a certain value of Λ, i.e. Λ = ΛSO/P , the tilt
angle equals 0◦, at which they switch to P modes. That is why it is interesting to derive
the value E

SO/P
z of the Ekman number, Ez = Ez(Λ, α), at which transition of SO into P

modes occurs. The critical horizontal wave number ac = πã
1/2
c for P modes with m̃ = 0

is given from the second of (23) by

ãc = 1/4
[
(1 + 8/α)1/2 − 1

]
= ãPc (α) ≡ a0, (25)

and is independent of the Ekman number Ez. The matching of the SO and P modes
can be achieved by substituting (25) into the first of (23) with m̃ = 0. This defines the

boundary Ez = Ez(Λ, α) ≡ E
SO/P
z between the two modes in the form

Ez =

√
c1 +

√
c1 + c2Λ2

π2Λ
, where c1 =

1

4(1 + αa0)2
, c2 =

4c1a0
1 + a0

(26)

6Denoted 1α, because 1α = 1 in the isotropic case α = 1.
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are functions only of the parameter α and for α = 1 they are the simple numbers c1 = 1/9
and c2 = 4/27. In (26), Λ ≡ ΛSO/P , i.e. Λ as well as Ez are the transition values

ΛSO/P and E
SO/P
z , respectively. The parallel steady modes were identified by Eltayeb [8]

in his equation (5.15), but in his double limit of large Taylor (= E−2) and Hartmann
(= (Λ/E)1/2) numbers7 these modes cannot be preferred.

We can express analytically only continuous SC/SO transition, not discontinuous one.
We obtain, by comparison of the critical horizontal wave numbers for the SC and SO
modes, a parametric representation of the function Λ = Λ(Ez, α) where Λ ≡ ΛSC/SO,

E ≡ E
SC/SO
z , and, for the sake of clarity, we perform it only for the isotropic case, α = 1,

when Ez = E. We have

E = π−2 ã

1 + ã

√
ã

(1− 2ã)(1− ã2)
and Λ =

√
(1− 2ã)(1 + ã)

(1− ã)ã
, (27)

where ã = a2c/π
2. Thus the “normalized” square of the critical horizontal wave number

is in the role of the parameter. We get, by direct comparison of this parametric represen-
tation and the numerically computed line, that the boundary, from which the parametric
representation characterizes the continuous SC/SO transition is Λ = Λs

.
= 2.35 and the

corresponding Es
.
= 0.0075. For Λ ≤ Λs and E ≥ Es the tilt angle of the rolls passes

continuously from 90◦ for the SC modes to 90◦ for the SO modes, while for Λ ≥ Λs and
E < Es it jumps from 90◦ to some other angle less than 90◦. Thus, the SC/SO transition
is not continuous for Λ > Λs and E < Es and (27) cannot be used. Hence, for Λ ≤ Λs

and E ≥ Es, the relation (27) corresponds to the dashed line representing the boundary
between the SC and SO modes on the ΛEz regime diagram in Figure 3a. For investigated
anisotropy with α = O(1), Λs as well as Es are monotonous functions of α.

Finally, we compare the stationary convection quantitative data in [17] and our results.
We consider the roughly estimated values of quantities8 in Fig. 3b in [17] as sufficiently
consistent with the information in the ΛEz regime diagram in the Fig. 3a.

4.2. Non-stationary modes

We introduce the following auxiliary substitutions (by the analogous V case in [21])

λ = iσ, y =
σ

K2
, yα =

σ

K2
α

, ϕ =
Λm2

πK
, x =

Ra2Ez

π2
and cα =

EzKK
2
α

π
. (28)

In the isotropic case it is valid to set yα = y, Kα = K and cα = c. After additional
algebraic operations, we get equation (17) in the form

qzx(1 + iy) {cα(1 + iy) + ϕ} = (qz + iyα)cα

{
[cα(1 + iy) + ϕ]2 + l̃(1 + iy)2

}
. (29)

At the same time, the new variables present in it, which are proportional to the physical
quantities like the Rayleigh number, Ekman number or the frequency, are expressed by
means of relations (28). For example, the variables x and x/cα are both proportional to
the Rayleigh number, R, but the latter is also independent of the Ekman number Ez.

7In [8, 9] there were good reasons for using the same dimensionless numbers as in Chandrasekhar [5]
8The regime τQ diagram in the Fig. 3b in [17] is for the quantities τ = E−1 and Q = ΛE−1.
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4.3. Non-stationary modes; limit Ez → 0

In the large ν limit, ν ≫ κ ∼ η, the neglect of Ez (7) can be related to the high
angular velocity, Ω0, which is the case for the Earth’s rotation. Furthermore, due to the
stress free boundaries the boundary layer phenomena for Ez = O(1) are excluded from
our model. Thus, the mathematical simplicity due to infinite Prandtl numbers, ν/κ and
ν/η, and Ez ≪ 1 is sufficiently heuristic for the Earth’s core conditions.

The limit Ez → 0 (cα → 0) leads to the following (29) simplification

qzx

cα
(1 + iy)ϕ = (qz + iyα)[ϕ

2 + l̃(1− y2 + 2iy)]. (30)

Using the condition ℑm(x) = 0 and the inverse transformations y = σ/K2 and yα = σ/K2
α

we obtain an important relation for the frequency σ,

σ2 = K4

[
qα − 1

qα + 1

ϕ2

l̃
− 1

]
with qα = qzlα, (31)

where lα is introduced in (20). The relation (31) shows, that in the inviscid case, cα = 0
(Ez = 0), the OC modes do not exist, because for l̃ = 0 the frequency is infinitely large,
which, naturally, cannot occur. It is valid for all α, for the isotropic and anisotropic cases.

After some algebra we obtain

xo

cα
=

2

qα

{
ψ +

l̃

ψ

}
with ψ =

ϕ

qα + 1
, (32)

which allows us to express the formula for the Rayleigh number as

Ro = π
KK2

α

a2

(
xo

cα

)
=

2π

qz

K3

a2

{
ψ +

l̃

ψ

}
. (33)

Note that the dependence of Ro on the anisotropy is hidden only in ψ, hence in qα by
(20) and the 2nds of (31, 32).

5. Numerical results

Focusing attention on the influence of anisotropic diffusion coefficients on the onset
of convection we try to accomplish two important comparisons. First, to distinguish the
isotropic case [4] and compare it with the two types of SA anisotropy, Sa and So (in the
H case So and BM anisotropies are coincident). Second, to compare the H and V cases
[24] from the point of view of the SA anisotropy only, because in the BM one in the V
case the broken horizontal isotropy causes complexities for presentation of results.

5.1. Approaches to the solution

The numerical search for the critical Rayleigh number Rc is performed in the same way
as in the V case and described in [24]. The analogous “critical” effective Rayleigh number,
Rce = Rc/α, is simply derived from the relation (8) between the Rayleigh numbers, R
and Reff , corresponding to their critical and “critical” numbers, Rc and Rce, respectively.
The quotation marks in “critical” are used, because Rc determines Rce. Henceforth, we

12



will often use the critical effective Rayleigh number for the Rce, despite the fact that Rce

is the result of minimization R and not Reff .
It is standard procedure that, at this stage of the solution the results are obtained nu-

merically, and the important ones selected from them are confirmed at appropriate limits
with asymptotic methods (see section 4). In the analytically performed minimization, fre-
quently two independent variables are derived from the basic independent variables, e.g.
from the horizontal components of the wave number, while one of them is a function not
only of the wave number but also of the selected input parameters, e.g. the Ekman or/and
Elsasser numbers. This enables us to minimize much more effectively and transparently.

5.2. Different effects of anisotropy on the stationary and nonstationary convection

Likewise, in the V case [24], we investigated how rolls with different orientations are
preferred in the space of parameters, Λ and Ez, and how this ΛEz regime diagram, distri-
bution of the preference regions of individually oriented rolls, is influenced by anisotropy
of the diffusion coefficients. The influence of anisotropy manifests itself in the change of
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Figure 3: Stationary convection; the ΛEz diagrams for the isotropic case α = 1 and for two anisotropic
cases, So and Sa, in the H case (a) and V case (b). The SC, SO and P rolls are preferred in the
correspondingly labeled regions. In (a) the asymptotes of the SC/SO and SO/P lines in the isotropic
case are the horizontal line, Λ = 4, and vertical line, E2

√
3/(9π2)

.
= 0.039000. The main qualitative

difference between ΛEz regime diagrams in the H and V case is the nonexistence of the “tail” in the V
case in which the SC/SO and SO/P boundaries are straight lines and not curves.

SC/SO and SO/P boundaries between the regions. The So anisotropy (α > 1) reduces
the preference region of oblique SO rolls and, vice versa, the Sa anisotropy (α < 1)
extends this region (Fig. 3). From the physical point of view this can be interpreted
as a weakening or strengthening of the effects of the Lorentz and Coriolis forces, where
the qualitative effects depend not only on anisotropy itself but also on the regime of the
convection. The So anisotropy with α > 1 weakens the effect of the Lorentz force and
strengthens the effect of the Coriolis force in the regime close to the SC/SO boundary (in
the Sa case, α < 1, this weakening and strengthening is opposite; the influence of the So
and Sa anisotropies is qualitatively reversed in the regime close to the SO/P boundary.)
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Figure 4: Effect of SA anisotropy on steady convection. Dependences of the critical Rayleigh numbers,
Rc and Rce = Rc/α, on the Elsasser number Λ at the Ekman number Ez = 3 · 10−7 in the H case (ab)
and in the V case (cd); cross and oblique rolls = SC and SO modes.

The investigation of the influence of anisotropy on the onset (the critical Rayleigh
number) and the form (critical wave numbers) of steady convection shows that the Rc is
an increasing function of α, but Rce = Rc/α is a decreasing function of α (see Fig. 4 and
Table 2.). However, if the Ekman number is small enough (say Ez = 3 · 10−7 here), the
Rc of the SC modes is independent of anisotropy in the H case (Fig. 4a). Unfortunately,
we cannot conclude whether the anisotropy (Sa or So) stabilizes or destabilizes the layer.
The critical horizontal wave number ac is a decreasing function of α, which means, that
the So anisotropy increases the horizontal sizes of the stationary convection rolls and the
Sa anisotropy decreases them (Fig. 5). The change of preference between the SC and
SO modes is accompanied with a sharp jump in values of the horizontal wave number, so
the change of preference from the SC to SO modes does not occur continuously with the
increase of the Elsasser number, Λ, like in the V case.

When examining the non-stationary convection, our attention was concentrated on a
simpler two dimensional Λqz regime diagram, dividing the space of parameters, Λ and qz,
into 5 preference regions, SC, SO, OC, OO and OC′; see Section 4. The OC′ modes, the
non-stationary convective rolls almost parallel to the rotation axis, revealed by Eltayeb [9],
do exist only in the H case. Likewise OC, the OC′ modes do not exist in the inviscid case,
E = 0. The SC/OC boundaries for qz ∼> 2 are in very good agreement with the formula
Λ ∼ [π2Ez/(qz − 1)][(a0 + 1)2/a0] asymptotically determined for qz ≫ 1, Λ ≪ π2Ez and
α = O(1); for a0 = a0(α) see (25). For Λ → ∞ the SO/OO boundaries are asymptotically
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Figure 5: Influence of anisotropy on the stationary convection. Dependences of the critical horizontal
wave number ac and the critical angle γc on the Elsasser number Λ at the constant Ekman number
Ez = 3 · 10−7 in the H case (ab) and in the V case (cd). The ac is decreasing and γc increasing function
of α. It means, that if the diffusion in the horizontal directions is enhanced (α > 1), the horizontal
dimension of the rolls is increased and the rolls are more inclined to the axis of rotation and vice versa.

determined by qz = [3/(1+αa0)][3a0/(1+a0)]
1/2, identical with the verticals9 in Fig. 6a.

Since anisotropy influences more or less all critical numbers describing convection (see
Table 2) the conditions of matching of modes are also affected by anisotropy. Therefore,
anisotropy influences significantly the position of the lines forming the boundaries between
these 5 regions in the Λqz regime diagram. The system of lines (except of boundaries
related to the OC modes) is shifted towards the smaller or higher values of Λ and qz
depending on the value of α, where, however, the overall frame of the lines is not changed
by anisotropy.

The results for the critical numbers are richer for nonstationary modes than for sta-
tionary convection and much richer if we compare the results forH and V cases. Accepting
the unique situation in the H case that the OC′ modes, de facto special OO modes, also
represent the OC modes for Λ ≤ O(1), then the change of preference from OC′ to OO
modes is analogous to the change of preference from stationary SC to SO modes. Thus,
there is a sharp jump in the critical values of the horizontal wave number and frequency,
which is not analogous to the V case in which the change of preference from OC to OO
modes is related to the continuous change of the critical numbers at the transitional value

9In the V case the SO/OO preference boundaries for Λ → ∞ are marked in Fig. 6c, and are asymptot-
ically determined by qz = 3

√
3 2α(2α + 1)1/2(α2α + 1)−1, 2α = [1 + (8 + α)1/2]/(2α); qz = 2 and 2α = 2

for α = 1.
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Figure 6: The Λqz regime diagram for stationary and non–stationary convection for two anisotropic, Sa
and So, and isotropic cases for Ez = 3 · 10−7 and Ez = 0 in H and V cases, respectively. Contrary to the
V case in (c) the regime diagram in the H case is divided into two parts (a) and (b), namely for larger
Λ ≥ O(1) and smaller Λ ≤ O(1). The OC′ modes are only in H case. The three (red, black and blue)
groups of lines, representing the boundaries between preference regions, are related to the three values of
anisotropy parameter, α = 0.5, 1 and 2.

of Λ. Furthermore, the OC and OO rolls have roughly twice as large horizontal sizes and
their critical frequency σc is much greater in the H case compared with the V case. In the
H case there is no constraint on the nonstationary convection with respect to the value
of the Elsasser number Λ, but in the V case the nonstationary convection does not exist
for Λ smaller than some onset Λ, which is a function of the anisotropy parameter α. We
can see it as the sharp left end of the dashed lines in Figure 7d which correspond to the
drop of frequences to the zero value in Figure 7f.

The study of anisotropy effects on the onset of convection (Figs. 4, 5 and 7, 8) reveals
a peculiar difference between oblique stationary and non-stationary modes. The same
anisotropy has a completely opposite influence on the critical numbers (Rayleigh, Rc and
Rce, and horizontal wave numbers ac) of SO stationary modes in comparison with OO non-
stationary modes. The So (or the BM) anisotropy with horizontal diffusivities greater
than the vertical ones, α > 1, decreases Rc and Rce as well as the horizontal size of the
OO rolls of the non–stationary convection. Further, it increases Rc, but decreases Rce

and ac of the stationary convection (SO). Thus we can conclude that the So anisotropy
destabilizes the layer with respect to non-stationary OO modes, but we cannot say the
same in the case of stationary SO modes. The Sa anisotropy with α < 1, has the
qualitatively opposite effect, with opposite monotonicity of critical numbers (changing
decrease to increase and vice versa), than the So anisotropy. The similarly opposite
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effects of So and Sa anisotropies are valid also for the SC modes and partly for the OC
modes. The Rc and ac of the OC modes are independent of anisotropy (see Table 2).

5.3. Rayleigh numbers

The effect of anisotropy on the onset of convection should be determined with the
definition of the Rayleigh number, which gives a true picture of its physical mechanism.
We used [24] the vertical thermal diffusivity κzz in the mathematical definition (8) of
the Rayleigh number R = gαT∆Td/2Ω0κzz, despite the fact that the horizontal thermal
diffusivity, κxx = κyy = ακzz, is important for the convection weakening the vertical
temperature gradient (see e.g. [18]). The vertical thermal diffusivity κzz apears in the
definition (8) of the first Rayleigh number R naturally because of the choice of the scale of
the dimensionless temperature perturbation ϑ in (6). However, the temperature difference
between upwelling and downwelling fluids is significant at the onset of convection and
therefore the horizontal diffusivity, κxx = ακzz, can be also important in the case of
anisotropy. Thus, the physically relevant Rayleigh number, labeled Reff , is defined by R
in the second formula of (8), Reff = R/α. Since in this paper the minimization and the
search for the critical Rayleigh number was done for R and not Reff , all regime diagrams
and critical horizontal wave numbers and frequences related to the “critical” Reff , labeled
Rce (see subsection 5.1.), are the same as for Rc, despite the fact that Rce and Rc are
different due to the obvious relation Rce = Rc/α.

The motivation for such a definition of the Rayleigh number in the anisotropic case
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is the apparent disagreement of the results in the V case [24] and the results in [14]
and possibly in [7], besides the correct physical understanding of convection. Ivers and
Phillips [14] noticed this discrepancy between [14] and [24], solving the problem of the
effect of the anisotropic thermal diffusivity on rotating convection with no magnetic field
in spherical geometry, in which they considered enhanced (or diminished) diffusion in
the z direction of the rotation axis to other directions of cylindrical coordinates, i.e. s
and azimuthal φ; see also Tables 1 and 2. Their anisotropy, which is roughly analogous
to our SA anisotropy, has the opposite effect on the onset of convection (the critical
Rayleigh number) as it is in our V case. It means that if our anisotropy “facilitates”
the onset of convection (decreases the critical Rayleigh number Rc), the anisotropy in
[14] “inhibits” the convection (increases the Rc). The quotation marks in “facilitates”
and “inhibits” present the authors’ opinion that in the anisotropic cases there could be
another physically more convenient definition of the Rayleigh number than is R or Reff .
This opinion is similarly related to other models, e.g. in [14] or [7]; see also the Table 1.
Some results of [7] can be compared with our results from some point of view which
can only qualitatively indicate the similarity/dissimilarity of the anisotropy effects on
the Rayleigh numbers in [7] and [24]. Donald and Roberts [7] showed, that introducing
anisotropy, β > 0 (analogous to our α < 1; β = (1 − α)/(1 + α)) makes the convection
stronger and β < 0 (α > 1) weakens the convection. However, their Rayleigh number
is much higher then the critical Rayleigh number and their developed convection is far
beyond the onset. Therefore we do not have direct information about the influence of
anisotropy on the critical Rayleigh number in their model.

In the case H investigated here, there is agreement for the nonstationary convection
with results in [14], but the effect of anisotropy on the onset of the stationary convection is
still qualitatively opposite in comparison with [14] (different monotonicity of Rc(α)). By
introduction of the effective Rayleigh numberReff (maybe physically more convenient than
the previously defined Rayleigh number R) the agreement is achieved also in stationary
convection, which can be seen in Figures 4b and 8b (and in Table 2 in section 6, too) as
equal ordering of the curves Rce, “critical” Reff , as functions of the anisotropy parameter
α. Similarly, as in our V case, the qualitatively equal effect of anisotropy on the onset of
convection, as in the case studied by Ivers and Phillips in [14], and possibly the dynamo
problem [7] by Donald and Roberts, was confirmed by introduction of Reff . The most
convenient definition of the Rayleigh number in the cases with anisotropic diffusivities is
yet an open problem, but there is a promising approach by Ivers and Phillips [15] to solve
it.

6. Conclusions

The influence of anisotropy of thermal diffusivity and viscosity, determined by the
anisotropy parameter α defined in the last of (7), on the model of rotating magnetocon-
vection in the horizontal plane layer was investigated using a linear stability analysis.
The layer rotates about the horizontal axis in the x−direction and is permeated with a
homogeneous magnetic field in the horizontal y−direction. The layer is heated from below
and cooled from above and a uniform temperature gradient is sustained.

We investigated instabilities, i.e. stationary convection and/or non-stationary convec-
tion, in the form of horizontal rolls (in the same way as in the V case [24]). Depending on
input parameters, the modes SO, SC, P, OO, OC′ and OC can occur; see section 4. The
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typical values of input parameters are not only geophysically relevant ones, i.e. Ez ≪ 1,
Λ ≤ O(10) and qz ≤ O(1), but they also involve values comparable to values frequently
used in geodynamo simulations. Due to the considered limits for diffusion coefficients,
ν ≫ κ ∼ η, attention was mainly focused on the MAC dynamics. The orientation of the
rolls with respect to the magnetic field and rotation axis is related to the Coriolis and
Lorentz forces. Results of their competition (but also of the Archimedean force) are well
expressed for all investigated modes of convection by two types of regime diagrams, ΛEz

and Λqz, and dependences of critical numbers on Λ.
A comparison of two models, the casesH and V , with different, horizontal and vertical,

orientations of the rotation axis, respectively, was done for various α ̸= 1 of the SA
anisotropy and for isotropic diffusivities with α = 1. There are many differences in
convection between the cases H and V . The important difference is that a certain type
of mode occurs only in the H case and not in the V case, for all investigated α. If, in
the H case, the Coriolis force dominates the Lorentz force (Λ ≪ 1), the convection is
two dimensional (with respect to the axis of rotation) and independent of rotation. With
increasing Λ, the Lorentz force becomes important for all α, but it has only a stabilizing
effect, because there is no local decrease of Rc(Λ) at Λ = O(1). Thus, the rotation
alone (with no or very week magnetic field) about the horizontal axis does not inhibit
convection, but it suppresses the inhibiting effect of the magnetic field on convection at
Λ = O(1) more effectively than in the case of vertical rotation axis; see [4, 8, 9] for α = 1.

The rotation axis in the vertical direction, V case, is always perpendicular to the axis
of the rolls, which has a significantly different effect in comparison with the H case with a
horizontal axis of rotation. The effect of the SA anisotropy on the stationary convection
is qualitatively very similar in both V and H cases, for instance the monotonicities of
critical numbers dependences on the anisotropy parameter α are the same; see Table 2.
The main difference is between ΛEz regime diagrams (Fig. 3) with the nonexistence of
the “tail” in the V case in which the SC/SO and SO/P boundaries are straight lines and
not curves.

More significant differences between the H and V cases are in the nonstationary case.
In the H case there is no constraint on the nonstationary convection with respect to the
value of the Elsasser number Λ, but in the V case the nonstationary convection does not
exist for Λ smaller than some onset Λ, which is a function of α.

In the V case and in other rotating magnetoconvection models the Lorentz force weak-
ens the Proudman-Taylor constraint at Λ = O(1), but in the H case the cross modes are
independent of rotation and therefore the rotational constraint in the usual way (like in
the V case) does not exist. For all α at qz = O(1) the OC and OC′ modes are preferred to
the oblique OO modes even for strong magnetic fields with Λ ≥ O(10). Thus the Lorentz
force has to be much stronger than the Coriolis force to cause the rolls to become inclined
to the basic magnetic field. This is very similar to the axially-aligned motions, nearly 2D
motions with respect to the axis of rotation in spherical geometry, which persist even for
strong magnetic fields, Λ = O(10) (see e.g. [13]), but dissimilar to the V case where OC
modes are preferred to OO modes only for smaller Λ ≤ O(1).

The OC modes in the H case are parallel to the rotation axis and are not influenced
by anisotropy, because the critical numbers, Rc, ac and σc, are not functions of α. In the
V case, Rc and ac of the OO (and not OC) modes are independent of α. The effect of
anisotropy on the OO modes manifests itself in the inclination γc of their rolls and contrary
to OC modes, in the dependence of the critical frequency σc on α; see Table 2. Thus,
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H case H case V case V case
steady conv. non-stationary conv. steady conv. non-stationary conv.

Rc ↑ ↓ (OO, OC′) ↑ − (OO)
− (OC) ↓ (OC)

Rce ↓ ↓ ↓ ↓

ac ↓ ↑ (OO, OC′) ↓ − (OO)
− (OC) ↑ (OC)

γc ↑ ↑ ↑ ↑

σc
↑ (OO, OC′) ↑− (OC)

Table 2: Qualitative effect of the SA anisotropy on the steady and non-stationary modes of convection
in the H and V cases. Three symbols, ↑, ↓ and −, mean that the critical numbers Rc, Rce, ac, γc and σc

are increasing, decreasing and independent of the anisotropy parameter, α, respectively. In the H case,
the effects of the So and BM anisotropies on the arising convection are the same.

the qualitatively opposite effect of SA anisotropy on the stationary and non-stationary
convection is valid also in the V case, where Rc for OC modes is a decreasing function of
α, opposite to the stationary case.

In the H case the monotonic dependence of Rc on α for some modes is different from
the spherical case [14]. An analogous difference (but for other modes) was also found for
the V case. “The critical” Rce of the introduced effective Rayleigh number Reff (8) has
the same monotonicity on α in both H and V cases (see Table 2) and like the critical
Rayleigh number in [14]. Therefore, in the plane geometry of our V and H cases Reff

based on the thermal diffusivity components in the directions perpendicular to gravity
could be a more convenient choice than an R based on the component in the direction
parallel to gravity. We can only indicate that in the spherical geometry, the choice of
the Rayleigh number is much more complex in a rotating fluid with anisotropic diffusion
coefficients.
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[23] Šimkanin, J., Brestenský, J., Ševč́ık, S., 2003. Problem of the rotating magnetocon-
vection in variously stratified fluid layer revisited. Studia Geophys. Geod., 47, 827–845.
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