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Maximally regular net for the rotational
ellipsoid

V. Pohánka
Geophysical Institute of the Slovak Academy of Sciences1

Ab s t r a c t : The maximally regular net on the unit sphere is adapted for the surface

of the rotational ellipsoid. The mapping between these two surfaces is performed by using

the ellipsoidal coordinates. The values of coordinates of vertices of the net at the surface

of the Earth reference ellipsoid WGS 84 were calculated from the coordinates of vertices

at the unit sphere.
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1. Introduction

The maximally regular net of domains partitioning the surface of the
unit sphere was defined in the author’s work Pohánka (2006) (in the sequel
referred to as NS). As it was already stated there (Section 8), this net
can be extended to any smooth surface, which does not differ too much
from the spherical surface. Among such surfaces the most important case
is the surface of the rotational ellipsoid, as many planetary bodies have
approximately this shape. The aim of this work is to describe the mapping
of the domains of the net from the unit sphere to the rotational ellipsoid.
This mapping uses the ellipsoidal coordinate system and it represents a
natural adaptation of the net to the ellipsoidal surface. However, it does
not necessarily mean that the resulting net is the maximally regular net at
the surface of the rotational ellipsoid (it is questionable whether there is a
reasonable criterion for the distinguishing of such a net).
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2. Adaptation of the net for the rotational ellipsoid

Let us have a body of the shape of rotational ellipsoid whose equatorial
radius is a and the excentricity is ε, where 0 ≤ ε < 1. If we introduce the
ellipsoidal coordinates (coordinates of oblate spheroid) υ, ξ, ψ, where υ ≥ 0,
0 ≤ ξ ≤ π, 0 ≤ ψ < 2π, we can write the radius-vector of arbitrary point in
the form

r(υ, ξ, ψ) = a (p(υ) sin ξ cosψ, p(υ) sin ξ sinψ, q(υ) cos ξ), (1)

where

p(υ) =
√

(1− ε2)υ2 + ε2, q(υ) =
√

1− ε2 υ (2)

(see Bateman and Erdélyi, 1953, 16.1.3, and Pohánka (1995), Section 6).
The surface defined by the constant value of the coordinate υ is (for υ > 0)
an ellipsoidal surface with the excentricity ε/p(υ); for υ = 0 it degenerates
to a disk with radius aε. The surface of the body is defined by the condition
υ = 1, while in the interior of the body we have 0 ≤ υ < 1.

The distance of a point with the radius-vector r(υ, ξ, ψ) from the centre
of the body is given by the expression

|r(υ, ξ, ψ)| = a
√

(1− ε2)υ2 + ε2 sin2ξ. (3)

The unit vector n(υ, ξ, ψ) of the external normal to the surface defined by
the constant value of υ is proportional to ∂ξr(υ, ξ, ψ) × ∂ψr(υ, ξ, ψ), and
thus it is equal to

n(υ, ξ, ψ) =
1

k(υ, ξ)
(q(υ) sin ξ cosψ, q(υ) sin ξ sinψ, p(υ) cos ξ), (4)

where

k(υ, ξ) =
√

(1− ε2)υ2 + ε2 cos2ξ. (5)

Finally, it is useful to introduce the unit vector

u(ξ, ψ) = (sin ξ cosψ, sin ξ sinψ, cos ξ); (6)
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note that it is equal to the limit of the vector r(υ, ξ, ψ)/a p(υ) for υ →∞.
Now let us consider the (abstract) unit sphere used to define the domains

of the net and for any point P of this sphere let v(P ) be its radius-vector
(see NS, Sections 2, 3 and 4). In the case of the spherical surface, the
normal vector to the surface at each point of this surface is proportional to
the radius-vector of this point of the surface. However, in the case of the
rotational ellipsoid, these two vectors have in general not the same direction,
and therefore we have several alternatives for the definition of the mapping
of points of the unit sphere to the surface of the rotational ellipsoid.

Thus, let Pe be the point at the surface of the body (whose ellipsoidal
coordinates are (1, ξ, ψ)) which should correspond to the point P . We could
identify the vector v(P ) with the unit vector r(1, ξ, ψ)/|r(1, ξ, ψ)| (propor-
tional to the radius-vector of the point Pe) or with the unit vector n(1, ξ, ψ)
(normal to the surface of the body at the point Pe). However, we do not
accept any of these two alternatives, but we identify the vector v(P ) with
the unit vector u(ξ, ψ).

The reason for this choice is that it allows to extend easily the defini-
tion of the point Pe for any value of the coordinate υ. The identification
v(P ) = u(ξ, ψ) defines the mapping which for any point P of the unit sphere
coordinates the point Pe(υ) with ellipsoidal coordinates (υ, ξ, ψ) and radius-
vector given by (1) (of course, it holds Pe(1) ≡ Pe). Then we can construct
(uniformly with respect to υ) the division of any ellipsoidal surface defined
by the constant value of υ. Thus we introduce for any vertex V (T) at the
unit sphere (see NS, Section 5) the corresponding vertex Ve(T) at the sur-
face of the rotational ellipsoid and the vertex Ve(υ,T) at the surface defined
by the constant value of υ. Similarly, we introduce for any domain S(Σ) at
the unit sphere (see NS, Sections 3 and 4) the corresponding domain Se(Σ)
at the surface of the rotational ellipsoid and the domain Se(υ,Σ) at the
surface defined by the constant value of υ.

Of course, the adopted mapping to the ellipsoidal surfaces results in
a distortion of the size and shape of the domains of the net (it can be
shown that this distortion is in our case smaller than by the other two
alternatives mentioned above). The measure of this distortion is the square
of the excentricity; therefore it is reasonable to restrict ourselves to the
surfaces defined by the condition υ ≥ υ0, where ε2 ¿ υ2

0 ≤ 1 (provided
ε2 ¿ 1).
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The coordinate υ corresponds in the ellipsoidal coordinate system to the
radial spherical coordinate: if we define some regular division of the interval
υ0 ≤ υ ≤ 1, we can construct a system of 3-dimensional domains dividing
regularly the upper layer of the body (from the surface υ = υ0 to the surface
of the body).

Moreover, our choice has another advantageous aspect: let us consider
for each υ such that 0 < υ ≤ 1 an ellipsoidal body whose surface is defined
by the particular value of υ; let the body have a constant density such that
the total mass of each body is equal to some given value. Then each such
body has the same external gravity field at any point r(υ, ξ, ψ) with υ ≥ 1.
This means that the surfaces defined by the constant value of υ represent
the generalization of the concentric spherical surfaces in the case of spherical
body.

For the convenience of the reader we present here the formulae allowing to
calculate the vector u(ξ, ψ) from the known position of the point Pe(υ). This
position can be given either by the normal vector n(υ, ξ, ψ) and the radial
coordinate υ (if we know the direction of the local vertical and the ellipsoidal
height) or directly by (the components of) the radius-vector r(υ, ξ, ψ) (if
we know the rectangular geocentric coordinates of the point). Let π be the
north pole unit vector

π = (0, 0, 1); (7)

in the case we know n(υ, ξ, ψ) and υ, we get from (4), (2) and (5)

cos ξ =
q(υ) π ·n(υ, ξ, ψ)√

p(υ)2 − ε2(π ·n(υ, ξ, ψ))2
,

k(υ, ξ) =
p(υ) q(υ)√

p(υ)2 − ε2(π ·n(υ, ξ, ψ))2

and finally

u(ξ, ψ) =
p(υ) n(υ, ξ, ψ)− (p(υ)−q(υ)) (π ·n(υ, ξ, ψ))π√

p(υ)2 − ε2(π ·n(υ, ξ, ψ))2
. (8)

In the case we know r(υ, ξ, ψ), we get from (1), (2) and (3)

q(υ)2 =
1

2 a2

(
r(υ, ξ, ψ)2−a2ε2 +

+
√

(r(υ, ξ, ψ)2−a2ε2)2 + 4 a2ε2(π ·r(υ, ξ, ψ))2
)
, (9)
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thus

υ =
q(υ)√
1− ε2

, p(υ) =
√
q(υ)2 + ε2 (10)

and finally

u(ξ, ψ) =
q(υ) r(υ, ξ, ψ) + (p(υ)−q(υ))(π ·r(υ, ξ, ψ))π

a p(υ) q(υ)
. (11)

3. The net at the surface of the Earth reference ellipsoid

The calculation of rectangular coordinates of vertices of the net at the
surface of the rotational ellipsoid from their values at the surface of the unit
sphere is a simple operation: from the equations (1) and (2) we easily obtain
that for υ = 1

r(1, ξ, ψ) = (a sin ξ cosψ, a sin ξ sinψ, b cos ξ), (12)

where b is the polar radius of ellipsoid

b =
√

1− ε2 a. (13)

Comparing the formula (12) with (6) we see that the mapping from the
surface of the unit sphere to the surface of the rotational ellipsoid with radii
a and b consists simply in multiplying the x and y coordinates of each point
of the unit sphere by a and the z coordinate by b.

The numerical values of rectangular coordinates of vertices of the net at
the surface of the unit sphere were calculated for degrees between 0 and
14 (see Pohánka (2007), in the sequel referred to as NSC). Recall that the
net of degree n contains 10 · 4n + 2 vertices, thus for n = 14 this amounts
to 2 684 354 562 vertices. As it was described in detail in NSC, Section 2,
the calculation was performed in the extended long double representation
of real numbers which allows to store 66 significant bits of every number
whose absolute value is less than or equal to 2 (compared with 64 bits in
the standard long double representation and 53 bits in the double repre-
sentation).
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The parameters of the Earth reference ellipsoid were taken from the WGS
84 system where the equatorial radius is a = 6378137m and the flattening is
f = 1.0/298.257223563 (note that f = (a− b)/a). The actually used values
of a and b (calculated from a and f) were a little different: the reason is that
their values are stored in the binary format and thus we have chosen the
actual values as binary numbers maximally close to the given ones with 10
significant hexadecimal digits. Moreover, in order to apply the arithmetics
developed for the extended long double representation of real numbers,
we used in the calculation the values of a and b multiplied by 2−23 (these
values are then smaller than 1). The adopted values of these constants are
(in the hexadecimal representation)

a · 2−23 = 0XC.2A5320000P− 4, b · 2−23 = 0XC.1FE20A0E5P− 4, (14)

and thus

a = 6378137.000000000000, b = 6356752.314247131348, (15)

what gives f = 1.0/298.257223590223.
The calculation of the rectangular coordinates of vertices of the net at the

surface of the Earth reference ellipsoid was performed in the extended long
double representation (in order to achieve the maximal possible accuracy);
the data are stored in this representation (36 bytes for each vertex) and
also in the double representation (24 bytes for each vertex). The way of
storing the data is the same as in the case of the unit sphere (for the detailed
description see NSC, Section 3). We present here for brevity only the basic
facts about the data files for net with degrees 12 ≤ n ≤ 14: for the degree
n = 12 there are 10 data files, for n = 13 there are 40 data files, and for
n = 14 there are 160 data files; each data file contains 16 785 409 vertices and
it occupies 604 274 724 bytes (in the extended long double representation)
or 402 849 816 bytes (in the double representation).

4. The orientation of the net at the surface of Earth

The calculated coordinates of vertices of the net are rectangular coordi-
nates where the positive z-axis points towards the north pole of the Earth;
the positive x-axis then points to some point Be at the equator of the Earth.
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Let λ0 be the geographic longitude of the point Be; then the correspondence
between the ellipsoidal coordinates ξ, ψ and the geographic coordinates φ,
λ is given by the equation

n(1, ξ, ψ) = u(π/2− φ, λ− λ0); (16)

according to (4) and (6) this implies (modulo 2π)

ψ = λ− λ0. (17)

The value of λ0 can be chosen (in principle) arbitrarily; in the case of the
usual geographic coordinates the point Be is the intersection of the equator
with the prime (Greenwich) meridian (what corresponds to λ0 = 0), but,
from reasons given below we prefer another choice.

Consider the simplest case, the net of degree 0 at the unit sphere (with
12 vertices, 20 domains and 30 edges): the only edges of this net identical
with a part of some meridian are those connecting the north pole V (00)
with the vertices V (a0) of the northern ring and those connecting the south
pole V (01) with the vertices V (a1) of the southern ring (where a is a digit
from among {1, 2, 3, 4, 5}; see NS, Section 2). According to the formulae (3),
(14), (15) of NS, within each ring the neighbouring vertices are 72 degrees
in longitude apart and the two rings are mutually displaced by 36 degrees
in longitude. After projecting the vertices V (ap) of the net of degree 0 from
the unit sphere to the rotational ellipsoid using the formulae (6) and (12),
we can conclude that the same differences in longitude apply for the vertices
Ve(ap) at the surface of the Earth reference ellipsoid.

Therefore, it has no sense to fix some vertex at the prime meridian. In-
stead of this, we find it advantageous to fix the boundaries of domains in
such a way that, if possible, the well separated continents are also sepa-
rated by boundaries of domains. As we have only a single free parameter,
we propose that Asia and North America should be separated by an edge
connecting the north pole with some vertex of the northern ring. On the
other hand, we require that the value of λ0 (expressed in degrees) should
be a simple number (more exactly, it should be a simple fraction of the full
circle). This can be at best achieved if we choose this value as −24 degrees.
The geographic longitudes of all vertices of the northern and southern ring
(in degrees) are then given in the Table 1. The geographic latitude of ver-
tices of both rings can be easily calculated using the formulae (14), (15) of
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NS, and (4), (5) and (6) from the present paper: the latitude of vertices of
the northern ring is 26.642098551 degrees (and opposite for the vertices of
the southern ring).

Table 1. Geographic longitudes of the vertices of the northern and southern ring

Ve(10) Ve(20) Ve(30) Ve(40) Ve(50)
−24 48 120 −168 −96

Ve(11) Ve(21) Ve(31) Ve(41) Ve(51)
12 84 156 −132 −60

5. Final note

The data files containing the calculated coordinates of vertices of the
net at the surface of the Earth reference ellipsoid can be obtained from the
author by a personal request.
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