
Contributions to Geophysics and Geodesy Vol. 37/4, 2007

Calculation of the maximally regular net
on the sphere

V. Pohánka
Geophysical Institute of the Slovak Academy of Sciences1

Ab s t r a c t : The method used for the numerical calculation of the maximally regular

net on the sphere is described and the results of the calculation are presented. The calcu-

lation required to develop the fixed point representation of real numbers and procedures

for manipulation with such data. The results include several empirical formulae for the

number of occurences of values of coordinates of vertices of the net and of values of scalar

product of radius-vectors of neighbouring vertices, whose theoretical derivation seems to

be very difficult.
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1. Introduction

The aim of this paper is to describe the numerical calculation of the rect-
angular coordinates of vertices of the maximally regular net on the sphere
presented by Pohánka (2006) (in the sequel referred to as NS). We recall
that this net of triangular domains (and their vertices) is defined for each
natural number n (called the degree of the net) in a very simple way as
follows. The domains of the net of degree 0 are central projections of the
sides of the regular icosahedron on the unit sphere (see Mathworld). For
any n (where n ≥ 0), each triangular domain of degree n is divided into
four smaller triangular domains by joining the centres of edges of the origi-
nal domain by segments of great circles (the smaller domains have then the
degree n+1).

Despite this simplicity, the actual numerical calculation of the coordi-
nates of vertices of these domains is not so straightforward, if we want to
achieve the maximal numerical accuracy. As the coordinates of vertices are
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calculated iteratively, it is evident that the accuracy of the numerical values
of coordinates will decrease with the increasing degree. Therefore it would
be very advantageous to calculate the coordinates of the vertices of certain
(suitably chosen) degree as accurately as possible. Then the coordinates
of vertices of any larger degree can be obtained from those already calcu-
lated with greater accuracy than by their direct calculation from the net of
degree 0.

2. Method of calculation

The calculation of the coordinates of vertices was performed for the net
of degree n = 14. The reason for this choice was twofold: first, this value
means that each vertex of the net will have the code containing 16 digits. As
explained in NS, Section 5, the code of each vertex of degree n is a sequence
of n+2 digits; for the vertices which are not the polar ones, the first digit
is from among {1, 2, 3, 4, 5}, the second one is from among {0, 1} and the
other ones are from among {0, 1, 2, 3} (for the two polar vertices, the second
digit is as before, while all other digits are equal to 0).

The second reason for the choice of this degree is that in the case of the
sphere with the radius equal to the earth equatorial radius, the elementary
edges of the net have the length of approximately 0.43 km (the length of
the edges is variable but confined in a narrow interval). Thus this net is
sufficiently dense for the practical purposes. Moreover, the still greater
value of degree would require enormous storage space: the net of degree n
contains 10 · 4n + 2 vertices, thus for n = 14 this amounts to 2 684 354 562
vertices.

In order to calculate the coordinates of these vertices with the maximal
possible accuracy, we have chosen to use the long double representation of
real numbers. The precision of any representation of real numbers can be
expressed by the value of the minimal difference of the representation which
can be defined as follows.

The minimal difference δ of the representation is the difference of any two
nearest different real numbers from the interval 〈0.5, 1.0〉 expressible in this
representation. It has to be noted that for the other choice of the interval
the difference of the two nearest real numbers is different: for example, for
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the interval 〈0.25, 0.5〉 it is δ/2, while for the interval 〈1.0, 2.0〉 it is 2δ. As
the characterization of the accuracy, the minimal difference is better than
the relative accuracy, which is not a constant: it lies in the interval (δ, 2δ).

The minimal difference of the long double representation is δld = 2−64,
while for the double representation it is δd = 2−53. In other words, in the
former case the mantissa of the representation has 64 significant bits, while
in the latter case only 53 bits.

The choice of the most accurate available representation is only the first
step in the calculation of the net; the second one is the use of the appropriate
arithmetics of calculation. The floating point arithmetics used in computers
is not the best one for the case of simple operations with the coordinates
of points on (or in) the unit sphere. The reason is in the uniformity of
the representations of real numbers with respect to the multiplication: this
means that the relative accuracy of the product of two numbers is of the
same order as the relative accuracy of these numbers. On the other hand,
the relative accuracy of the sum (or difference) of two numbers can be much
smaller than the relative accuracy of these numbers. Further, the absolute
accuracy of the sum of two numbers can be smaller (up to twice) than the
absolute accuracy of these numbers. Another unpleasant effect is that the
result of summation of three (or more) numbers may depend on the order
of summation; in order to obtain a unique result it is necessary to order
the numbers according to their absolute value and to add them in the order
from the smallest to the largest one.

The floating point representation may also hinder the comparison of two
real numbers with close values. In our case it is necessary to test the absolute
value of the (calculated) unit vector with respect to the expected value 1.
This is complicated by the fact that the nearest number smaller than 1.0
expressible in the floating point representation is 1.0− δ, while the nearest
number greater than 1.0 is 1.0+2δ. Thus there is no uniform measure of
the deviation of a number from the value 1.0.

In the calculation of the net we have to perform mostly the operations of
the summation and scalar multiplication of two unit vectors (note that by
the latter operation we calculate the sum of three products of components of
these vectors). Thus the negative properties of the floating point arithmetics
apply fully to our case.

Let us consider the radius-vectors of the points on or in the unit sphere:
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any component of any such vector is absolutely smaller than or equal to 1.
In order to represent the position of these points with an uniform accuracy
we need to know the components of their radius-vectors with some given
absolute accuracy (the relative accuracy of these components is irrelevant).
Then the sum of two (or more) vectors will be the vector whose components
will have the same absolute accuracy. Similarly, the scalar product of two
such vectors will have also this absolute accuracy (as this product is always
absolutely smaller than or equal to 1).

In order to conform to these requirements, it is necessary to adopt the
suitable fixed point representation of real numbers and the suitable fixed
point arithmetics (uniform with respect to the addition). The representation
and arithmetics used in our calculation are described below.

The adopted fixed point representation of real numbers has two forms:
one is used in the arithmetical operations with these numbers, while the
other is used for the storage of these numbers. We begin with the former
(called the internal representation): the real number x is represented as
the pair (k, q), where k is a long int number and q is a long double
number such that 0.0 ≤ |q| < 0.25 and the sign of k (if it is nonzero)
is the same as the sign of q; the value of the real number represented by
this pair is x = 0.25k + q (it is clear that this representation is unique).
Moreover, the value of q is normalized: this means that for any q such that
0.0 ≤ |q| < 0.125 the value of q is rounded to the absolute accuracy 2−66

(this is the accuracy of any q such that 0.125 ≤ |q| < 0.25). The pair
(k, q) is declared as the struct lde4 number (it means the long double
extended by the factor 4). The minimal difference of this representation is
thus δlde4 = 2−66.

For the storing of struct lde4 numbers we have used the fact that
the long double number occupies in the memory 12 bytes, but from these
only the first 10 bytes contain the value of this number, while the last 2
bytes are arbitrary. These 2 bytes can be used for the storing of additional
information; in our case the first byte is zero, while the second byte contains
the additional bits of the mantissa of the stored number (the first 64 bits
are stored in the first 10 bytes). Thus the second byte can contain from 0
to 4 nonzero bits according to the absolute value of the stored real number
x: 0 bits for |x| < 0.25, 1 bit for 0.25 ≤ |x| < 0.5, 2 bits for 0.5 ≤ |x| < 1.0,
3 bits for 1.0 ≤ |x| < 2.0, and 4 bits for 2.0 ≤ |x| < 4.0. This is our external
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representation of real numbers; it can represent any number x such that
0.0 ≤ |x| ≤ 4.0 with the absolute accuracy of 2−66 (numbers with larger
absolute value do not appear in our calculation).

The adopted fixed point arithmetics is based on the internal representa-
tion of real numbers and the usual long double arithmetics; it is applicable
to real numbers such that 0.0 ≤ |x| ≤ 4.0. It contains several procedures for
the manipulation with the struct lde4 numbers: procedure sume4 for the
summation of two numbers, multe4 for the multiplication of two numbers,
invep4 for the inverse value of the positive number, sqrtep4 for the square
root of the positive number, and other ones. There are also procedures
ldtoe4 and e4told for the conversion of the external to the internal repre-
sentation and vice versa, and the procedure printe4 for the text output of
struct lde4 numbers.

For the operations with vectors there is introduced the structure struct
vecte4 containing three struct lde4 vector components. The procedure
vecte4prod calculates the scalar product of two vectors; as all struct lde4
numbers are normalized, the value of the scalar product does not depend
on the order of summation.

Now we can describe the calculation of the coordinates of the vertices of
the net. As explained in NS, Sections 2 and 5, each vertex is denoted by
the sequence of digits T and expressed by the unit radius-vector e(T). The
net of degree 0 contains two polar vertices with codes 00 and 01

e(00) = (0, 0, 1), e(01) = (0, 0, −1), (1)

and 10 vertices (northern ring vertices a0 and southern ring vertices a1)

e(a0) =
1√
5
(2 cos (2a−2)ψ5, 2 sin (2a−2)ψ5, 1), (2)

e(a1) =
1√
5
(2 cos (2a−1)ψ5, 2 sin (2a−1)ψ5, −1), (3)

where a ∈ {1, 2, 3, 4, 5} and ψ5 = π/5. Using the formulae

cosψ5 =
√

5 + 1
4

, cos 2ψ5 =
√

5− 1
4

, (4)
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and cos 3ψ5 = − cos 2ψ5, cos 4ψ5 = − cosψ5, we can easily calculate

e(10) = (c6, 0, c2), e(11) = (c4, c3, −c2),
e(20) = (c1, c5, c2), e(21) = (−c1, c5, −c2),
e(30) = (−c4, c3, c2), e(31) = (−c6, 0, −c2), (5)
e(40) = (−c4, −c3, c2), e(41) = (−c1, −c5, −c2),
e(50) = (c1, −c5, c2), e(51) = (c4, −c3, −c2),
where the constants ci are defined as follows:

c1 =
1
2
(1− c2), c2 =

1√
5
, c3 =

√
c1,

c4 =
1
2
(1 + c2), c5 =

√
c4, c6 = 2c2. (6)

Note that the expression (5), (6) of the radius-vectors is more preferable
than the expression (2), (3), as by the numerical calculation of the latter one
there can be more mutually different values of components of vectors than
by the former one. Nevertheless, even the values of constants ci calculated
according to (6) with the fixed point arithmetics are not their definitive
values. The main criterion for their values is that the 12 vectors (1), (5)
have to be unit vectors and the scalar product of any pair of neighbouring
vectors has to be equal to c2. Therefore the following test was performed:
the scalar product of each pair from among the 12 vectors was calculated
for variable values of all 6 constants ci (differing from the values (6) by a
small multiple of δlde4) and the number of mutually different values of the
scalar product was obtained. In the ideal case this number would be 4 (the
exact values of the scalar product are in the increasing order −1, −c2, c2
and 1). The result of the test was that there was the single minimum of
different values of the scalar product with 2 values corresponding to 1 and 4
values corresponding to c2; this minimum was obtained for corrected values
of c1 and c5. The definitive values of the constants ci are given below:

c1 = 0.27639320225002103035, c2 = 0.44721359549995793928,
c3 = 0.52573111211913360602, c4 = 0.72360679774997896964, (7)
c5 = 0.85065080835203993219, c6 = 0.89442719099991587857.

After obtaining the positions of the vertices of degree 0 the calculation of
the positions of vertices of degree greater than 0 was possible. As explained
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in NS, Section 4, any edge of the net of degree n is divided into two edges of
degree n+1 by its centre (this centre is the vertex of degree n+1). The centre
of the edge whose endpoints have radius-vectors u, v, has the radius-vector
c(u,v), where

c(u,v) =
u + v

|u + v| . (8)

Thus the calculation of the coordinates of new vertices according to this
simple formula seems to be an easy task. Nevertheless, as in the case of
degree 0, the numerical calculation may yield vectors whose (squared) ab-
solute value differs from 1 by more than it is desirable. Moreover, there is
another circumstance, which is even more important for the accuracy of the
calculated net of degree n > 0. Consider the set of all values of (calculated)
coordinates of vertices of some order; this set contains besides 0 some num-
ber of positive and the same number of negative values of coordinates (with
respect to the method of their calculation there is for every positive value
the single negative value which differs from the former only by its sign).
As shown above, the number of positive values of coordinates for the net
of degree 0 is 7. By the numerical calculation of the net of degree n+1
from the net of degree n it can happen that for each theoretical value from
the set of all values there are several calculated numerical values (instead of
the expected single one). However, on the contrary to the case of degree 0,
it is hardly possible to derive some useful formulae (similar to (6)) for the
theoretical values of coordinates of degree n > 0.

Therefore, for the recognition of the multiple values (corresponding to
the single theoretical value) there was applied the following simple criterion:
if the difference of two calculated values of coordinates is smaller than 5δlde4,
then these two values belong to the single theoretical value. Of course, if
it happens that the two theoretical values are less than 5δlde4 apart, then
they are merged into a single value. This case was not expected, as a very
crude consideration shows that the positive values of coordinates should be
distributed almost uniformly in the interval 〈0.0, 1.0〉; thus the difference
between two successive values of degree n should be roughly of the order
4−n, what is for n ≤ 14 much greater than 4δlde4.

The multiple calculated values of coordinates have to be corrected to
obtain the single value; otherwise the multiplicity of values would grow

365



Pohánka V.: Calculation of the maximally regular net . . . (359–376)

with increasing degree and for the net of degree 14 it could be unacceptably
high. The correction was performed successively (as there can be up to
five values corresponding to the single theoretical value). For each value
there was first obtained the statistics showing for each integer k (where
−4 ≤ k ≤ 4) the number of occurences of this value in vectors with squared
length of 1.0+kδlde4. This statistics was then used in the process of choosing
the resulting single value with the aim to minimize the negative effects of
the choice: it is clear that the change in one component of a vector results
(mostly) in the change of its squared length.

Despite this aim the process of replacing multiple values of coordinates
by a single one increases the number of vectors with squared length differing
from 1.0 by more than it is acceptable. For brevity we shall say that the
squared length of a vector is admissible just if it is in the interval 〈1.0−δlde4,
1.0+δlde4〉; such vector will be called the admissible one. The original vectors
(before the described reduction) were mostly admissible and only a few had
the squared length differing from 1.0 by 2δlde4. On the contrary, after the
reduction there were relatively many vectors with squared length differing
from 1.0 by 2δlde4, 3δlde4 or even more.

Therefore, the next step after the reduction of multiple values was the
correction of values of components of inadmissible vectors in order to de-
crease the number of them; the ultimate goal was that every vector would be
admissible. This second correction of the values of components of vectors is
not an easy task, as the change of a single value results in the change of the
squared length of all vectors in which this value appears as a component.
Thus making some vectors admissible can make other vectors inadmissible.

After several attempts there was finally developed an algorithm for the
iterative correction of the set of values of components of vectors reducing
in each iterative step the number of inadmissible vectors. This algorithm
can be described shortly as follows: in each iteration there is first found the
set of all inadmissible vectors and (as above) the set of all values of com-
ponents of all vectors together with the statistics showing for each value
and for each integer k the number of occurences of this value in vectors
with squared length of 1.0+kδlde4. For each inadmissible vector the evalu-
ation of this statistics of its components is performed in order to find the
component that is chosen for the correction of its value. Moreover, if this
choosing is successful, all components of this vector are marked; if for some
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next inadmissible vector there is some value of one of its components that
is already marked, this vector is left unchanged. After checking all inadmis-
sible vectors the correction of values is performed in all data files and the
next iterative step can follow. The algorithm stops if there is no possibility
to change any value.

The result of the application of this algorithm represents the definitive
set of vectors of vertices of the given degree; this set can be then used in
the calculation of the vectors of vertices of the next higher degree. In this
way there were obtained the definitive data files containing for each degree
n ≤ 14 the components of radius-vectors of vertices of this degree.

3. Storing the calculated data

We describe here the way of storing the coordinates of vertices in the
data files. As it was mentioned in the previous section, each coordinate is
stored in 12 bytes as a long double number (where the last two bytes are
also necessary for the recovering of the whole struct lde4 value). Each
vertex thus occupies 36 bytes containing its x, y, z coordinates. The order
of vertices in the data files is not conforming their denotation, but the
natural order, which is as follows. According to NS, Section 3 (and Fig. 1
therein), if we unfold the surface of the regular icosahedron, we obtain the 20
planar triangular domains which can be grouped in 10 pairs of domains (each
pair has the common base vertex, see NS, Section 5). The coordinates of
vertices are stored in 10 data files each containing the vertices of one pair of
triangular domains (thus all vertices in the domains and at their boundary).
Therefore the vertices lying at the boundary of each pair of domains are
contained in the data files more than once, but this is advantageous by the
finding of the neighbours of the given vertex, see NS, Section 7). For each
pair of triangular domains, the vertices are stored in rows ordered from
the top to the bottom (thus from the north to the south); in each row the
vertices are ordered from the left to the right (thus from the west to the
east). For the net of degree n, the number of rows is 2n+1+1; the number
of vertices in the row grows linearly from 1 in the first row to 2n+1 in the
middle (thus (2n+1)-st) row and then decreases linearly to 1 in the last row.
The total number of vertices stored in the single data file is thus (2n+1)2.
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The described way of organisation of data files represents the ideal case;
the actual organisation is different, because the length of the data file (in the
system used by the calculation) cannot be greater or equal than 2 gigabytes.
Therefore the described organisation can be used only for the net of degree
n ≤ 12; for larger degree it was necessary to divide the data files into smaller
ones. This was done using the natural division of domains described in NS,
Section 4 and 5. For the degree n ≤ 12 the data files (each containing one
pair of domains) are denoted by the sequence ap (where a ∈ {1, 2, 3, 4, 5},
p ∈ {0, 1}) which is the code of the base vertex of this pair of domains.
For the larger degree, each pair of triangular domains is divided once (for
n = 13) or twice (for n = 14) into four pairs of triangular domains denoted
(in accordance with their base vertex) by the sequence aps1 (where s1 ∈
{0, 1, 2, 3}) for n = 13 and the sequence aps1s2 (where s2 ∈ {0, 1, 2, 3}) for
n = 14. The organisation of the vertices in these divided data files is the
same as in the original ones. Thus for the degree n ≤ 12 there are 10 data
files, for n = 13 there are 40 data files, and for n = 14 there are 160 data
files. For the degree n ≥ 12, each data file contains 16 785 409 vertices and
it occupies 604 274 724 bytes.

4. Results

The actual calculation of the data has shown that the procedures for the
correction of the values of coordinates described in the Section 2 worked
flawlessly with the single exception in the case of degree 14, where it was
necessary to perform an additional correction of a single pair of successive
values. The occurence of this exceptional case was the consequence of the
behaviour of the distribution of values of coordinates of vertices, which was
quite different from the expectation. It was confirmed that the positive
values of coordinates of vertices are distributed in the interval 〈0.0, 1.0〉
almost uniformly, but it turned out that there are several small subintervals,
where the values are distributed much densely than in the mean. The
minimal difference of the successive values was shown to be greater than
5δlde4 only for n ≤ 12, where it decreased with the increasing degree n
roughly as 2−5n, thus much faster than expected. For n > 12 this decreasing
stopped: the minimal difference was 113δlde4 for n = 12, and 5δlde4 for
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n = 13 and n = 14. From the behaviour of the minimal difference for
n ≤ 12 it was possible to determine its theoretical value for n ≥ 12: this
value is 113.2δlde4 for n = 12, 3.5δlde4 for n = 13, and 0.1δlde4 for n = 14.

This means that for the degrees 13 and 14 the calculated data contain
several values of coordinates which are the result of merging of more theo-
retical values into a single one. This does not represent any drawback for
the use of data in practice, as the merged values can hardly differ from the
theoretical value by more than 2δlde4. In this context it is very interesting
that for every value in the data it was possible to determine, whether this
value is the result of merging of more theoretical values, and, also the num-
ber of these merged theoretical values (see below). It turned out that there
are values resulting from the merging of 2 theoretical values (totally 1 011
values for n = 13 and 2 224 values for n = 14) and values resulting from the
merging of 4 theoretical values (totally 2 042 values for n = 14).

The actual calculation has shown that the procedure of reduction of
multiple values of coordinates of vertices worked well for each degree (with
the single exception mentioned above) and in each step the multiplicity of
values was reduced by 1. For each degree n, the number of positive values
with the multiplicity i in the uncorrected data is shown in Table 1 as Mi;
the maximal multiplicity was 4. As for the subsequent iterative correction
of values of coordinates, in each iterative step the number of inadmissible
vectors was reduced by the factor of about 4; the number of iterative steps
is shown in Table 1 as I.

For each degree n, the number of resulting positive values, which were in
the iterative process corrected i-times, is shown in Table 2 as Ni; the max-
imal number of corrections was 4. The fact that some value was corrected
i-times does not necessarily mean that the total correction was iδlde4, as for
i ≥ 2 there can be corrections which moved the value in both directions.
The total number of resulting positive values is shown in Table 2 as N .

As for the length of the vectors, the resulting data of degree 14 show that
there remained only 24 inadmissible vectors, all with the squared length of
1.0−2δlde4.

An interesting result of the calculation was the number of occurences of
each positive value as (the absolute value of) the coordinate of a vertex in
the whole data of the given degree. It could be expected that every positive
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Table 1. Number of values of coordinates Mi with mutiplicity i > 1 in the uncorrected
data and the number of iterations I for each degree n

n M2 M3 M4 I

0 0 0 0 0

1 2 0 0 1

2 5 0 0 0

3 31 0 0 2

4 72 0 0 2

5 340 1 0 3

6 1385 10 0 4

7 5491 34 0 5

8 21825 183 0 8

9 88428 853 0 7

10 354789 3717 1 8

11 1428180 14955 3 9

12 5713096 62374 10 10

13 22925019 254287 44 12

14 91950261 1035975 175 12

Table 2. Number of values of coordinates Ni corrected i-times and the total number of
resulting values N for each degree n

n N0 N1 N2 N3 N4 N

0 7 0 0 0 0 7

1 15 1 0 0 0 16

2 48 1 0 0 0 49

3 249 3 1 0 0 253

4 1053 14 1 0 0 1068

5 4276 53 3 0 0 4332

6 17159 217 11 1 0 17388

7 68551 1022 38 1 0 69612

8 274091 4254 156 7 0 278508

9 1095487 17911 680 14 0 1114092

10 4379348 73947 3068 65 0 4456428

11 17510347 302259 12891 275 0 17825772

12 70026227 1222707 53098 1116 0 71303148

13 280057254 4932473 217120 4790 4 285211641

14 1120057585 19876548 888258 19914 13 1140842318

370



Contributions to Geophysics and Geodesy Vol. 37/4, 2007

value appears in the data for the first time for some degree and with the
increasing degree the number of occurences of this value will grow (it is clear
that this number cannot decrease). However, it turned out that there are
only 16 values whose number of occurences has grown; in other words, these
values appeared in the new vertices of some degree (these are the vertices
which were not present for lower degree) for more than one value of degree.
In detail, 3 values appear in new vertices of the degree n ∈ {0, 1, 2}, 4 values
in the degree n ∈ {0, 2}, 8 values in the degree n ∈ {1, 2}, and one value in
the degree n ∈ {1, 4}. All other positive values appear in the new vertices
of some degree and then the number of their occurences remains constant
with the increasing degree. It turned out that for degrees 2 ≤ n ≤ 12 the
number of occurences of any positive value in the whole data is always a
number from the set {2, 4, 6, 8, 10, 12, 14, 20, 24}; for degrees n ≥ 13 there
are values whose number of occurences is 16 and for n = 14 there are values
whose number of occurences is 32.

Moreover, if we define for each degree n the quantity N(n, o) as the
number of positive values whose number of occurences is o (where o is
a number from the set mentioned above), using the values of N(n, o) for
degrees 4 ≤ n ≤ 12, we can derive the following empirical formulae for the
quantity N(n, o):

N(n, 2) = 6 · 2n−2 − 5, N(n, 4) = 40 · 4n−2 − 5 · 2n−2 − 18,
N(n, 6) = 2 · 2n−2, N(n, 8) = 20 · 4n−2 − 11 · 2n−2,

N(n, 10) = 6 · 2n−2 − 5, N(n, 12) = 5 · 2n−2 + 5, (9)
N(n, 14) = 2 · 2n−2 − 1, N(n, 20) = 8 · 4n−2 − 5 · 2n−2 + 2,
N(n, 24) = 2,

where n ≥ 4. There is no reason for these formulae to be not valid for all
n ≥ 4; assuming their validity we obtain from them the expected values
of N(13, o) and N(14, o) and we can compare these with the actual values.
The result is that there is the agreement with the exception of the value of
N(n, 8), which is smaller than expected. With respect to the presence of
values with exceptional number of occurences 16 and 32, the single conclu-
sion can only be that these values have to be the result of merging of 2 or 4
values with the number of occurences 8 into a single value. After account-
ing for these exceptional values we get the complete agreement between the
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expected and calculated values of N(n, 8).
From formulae (9) we easily obtain the formula for the total number of

positive values N(n) for n ≥ 4:

N(n) =
∑

o
N(n, o) = 68 · 4n−2 − 20, (10)

and we can calculate the corrected values of the quantity N in Table 2:
for n = 13 we obtain N = 285 212 652 and for n = 14 we have N =
1140 850 668. Similarly, we can calculate the total number of occurences of
all positive values K+(n) for n ≥ 4:

K+(n) =
∑

o
oN(n, o) = 30 · 4n − 9 · 2n + 2, (11)

and we can compare this with the total number of coordinates of all vertices
K(n) which is

K(n) = 3 (10 · 4n + 2). (12)

Their difference K(n)−K+(n) = 9 ·2n +4 is the total number of occurences
of zero in the coordinates of all vertices (for n ≥ 4).

So far we have considered only the properties of the values of coordinates
of vertices in the calculated data. Now we have to mention also the intrinsic
properties of the vectors of vertices, namely their mutual position, which is
expressed by the values of the scalar product of neighbouring vertices (for
explanation see NS, Sections 2, 5, 7). As we have described in Section 2, in
the case of the vertices of degree 0, the components of radius-vectors of these
vertices were chosen in order to minimize the number of different values of
the squared lengths of these vectors and the number of different values of
the scalar product of vectors of neighbouring vertices. For degrees n > 0 we
have only aimed to correct the components of radius-vectors of the vertices
in order to make their squared length as close to 1.0 as possible. This
was because the including of the testing of the scalar product of vectors
of neighbouring vertices in the process of correction would be extremely
difficult, both from the view of the construction of the algorithm and from
the view of the computer capacity.

Therefore it was necessary, at least afterwards, to check the calculated
coordinates of vertices with respect to the multiplicity of the values of the
scalar product of vectors of neighbouring vertices. The first step was the
calculation of these scalar products (the total number of products for degree
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n is 30 · 4n), the next step was the ordering of their values. This operation
was quite difficult, not only because of the huge number of values, but also
because of the distribution of these values which turned out to be extremely
nonuniform; the nonuniformity increased steeply with the increasing degree.

After the ordering of the values of the scalar product it was possible
to determine the groups of values that were assumed to correspond to the
single theoretical value. These groups were originally defined as the sets of
the successive values such that the difference between any two successive
values in the set is δlde4. However, it turned out that in some cases two
successive values whose difference is greater than those mentioned should
belong to the same group. This is because the total number of occurences
of all members of a group should be divisible by 30; this property is the
consequence of the symmetries of the regular icosahedron. Therefore the
definitive groups were defined as follows: if the original group satisfies the
mentioned condition, it is the definitive group; if not, the definitive group
consists of more successive original groups which do not satisfy this condition
(it is easy to show that the choice of the definitive groups is unique).

The determination of the definitive groups has shown that for degrees
n ≤ 8 the particular groups of values were mutually well separated and
the number of values within any single group was not greater than 6. This
behaviour was in concordance with the presumption that each group of
calculated values corresponds to a single theoretical value. However, for
n ≥ 9 there were more and more groups containing more than 6 values (the
absolute maximum was 42 for degree 14), what indicates that these groups
correspond to more theoretical values of scalar product.

For each group of values there was determined the number of local max-
ima of the distribution of the number of occurences of each value belonging
to the group. It turned out that there is a clear trend of the increase of the
number of the local maxima with the increasing number of values in the
group. Although this cannot be an absolutely reliable criterion, it supports
the view that the groups with more than 6 values very probably correspond
to more theoretical values of scalar product.

The resulting statistics is presented in Table 3: for each degree n there is
tabulated the number of values of the scalar product (denoted as Mi) which
appear in the data with the multiplicity i (the last column contains the sum
for all multiplicities i > 10).
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The table clearly shows that in general the multiplicity of particular cal-
culated values is small: for degrees n ≤ 11 the number of values has a clear
maximum at the multiplicity at most 4, and even for n ≥ 12, where there
are also larger multiplicities, the maximum grows only to the multiplicity
6. This demonstrates that the calculated data are sufficiently accurate.

Table 3. Number of values of scalar product of vectors of the neighbouring vertices Mi

with mutiplicity i for each degree n

n M2 M3 M4 M5 M6 M7 M8 M9 M10 M>10

0 0 0 1 0 0 0 0 0 0 0

1 0 2 0 0 0 0 0 0 0 0

2 0 3 2 0 0 0 0 0 0 0

3 0 5 9 1 0 0 0 0 0 0

4 1 20 25 5 0 0 0 0 0 0

5 2 65 101 19 0 0 0 0 0 0

6 4 210 397 101 3 0 0 0 0 0

7 28 850 1512 391 14 0 0 0 0 0

8 81 3211 6263 1446 50 0 0 0 0 0

9 331 12793 24574 5879 244 25 7 1 0 0

10 1107 46393 93369 24227 1752 939 586 171 78 43

11 1566 59521 169018 89031 18607 35186 28825 11213 5061 4504

12 0 2887 115965 226477 100618 32194 36018 44896 23498 19272

13 0 98 47248 269645 206743 61037 46362 88297 65356 52107

14 0 0 3267 236658 383551 177530 61065 67899 102300 126384

Similarly as by the values of coordinates of vertices, an interesting result
of calculation was the number of occurences of values of scalar product
of the radius-vectors of neighbouring vertices. This number of occurences
was calculated for each group of values (as described above) as the sum of
occurences of all calculated values belonging to this group. For degrees 0
and 1 the number of occurences corresponds to its theoretical value: if we
define the quantity

O(i) = 30 · 2i, (13)

we find that for n = 0 there is one theoretical value of scalar product with
O(0) occurences (this corresponds to the 30 edges of the net of degree 0),
while for n = 1 there are two theoretical values of scalar product, each with

374



Contributions to Geophysics and Geodesy Vol. 37/4, 2007

O(1) occurences. It turned out that for degrees 2 ≤ n ≤ 8 the number of
occurences of values belonging to each group can be equal only to one of the
numbers O(i) for 1 ≤ i ≤ n. The number of groups with the total number
of occurences equal to O(i) is P (n, i), where

i = 1 : P (n, 1) = 2n−1,

1 < i < n : P (n, i) = 2 · 4n−i, (14)
i = n : P (n, n) = 3.

The existence of this empirical dependence definitively confirms that for
degrees 2 ≤ n ≤ 8 each group of values of scalar product corresponds to the
single theoretical value of scalar product. For degrees n ≥ 9 the formula
(14) is no longer valid: speaking generally, the values of P (n, i) are for
lower values of i smaller than expected and for higher values of i greater
than expected. Moreover, for n ≥ 11 there appear numbers of occurences
different from O(i). All this supports the view that for n ≥ 9 there are
groups of values corresponding to more than one theoretical value, and
therefore, the existence of groups of values with more than 6 members does
not represent an inaccuracy of the calculation, but it is the consequence of
the nonuniform behaviour of the theoretical values.

5. Conclusion

The above discussion shows that the calculated values of rectangular co-
ordinates of vertices of the maximally regular net on the unit sphere differ
from their theoretical value in the prevailing number of cases by at most
2δlde4. Therefore, after rounding to the long double precision, the nu-
merical values should be accurate with the possible difference of maximally
δld; this accuracy corresponds to the 20 decimal digits with the possible
difference of maximally 2 in the last decimal digit.
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