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Formula for the characteristic solution
of the inverse problem of gravimetry
in the case of a planar surface

V. Pohánka
Geophysical Institute of the Slovak Academy of Sciences1

A bs t r a c t : The solution of the inverse problem of gravimetry for a spherical planetary

body obtained in [1] is transformed to the idealized case of a body represented by a

halfspace.
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The inverse problem of gravimetry for a spherical planetary body was
treated in [1] and the method for its solution was presented briefly in [2].
In the case we are interested only in a local inverse problem (where the
curvature of the surface of the body can be ignored), it is advantageous
to use the planar version of this solution, which can be obtained by fixing
some point of the surface of the body and letting the radius of the body tend
to infinity. In this limit the surface of the body becomes a plane dividing
the halfspace containing the matter (the interior domain) from the other
(exterior) one. As we intend to treat only the local inverse problem, the
density of matter and the gravity field (generated by this density) will be
the anomalous ones.

We use the rectangular coordinate system x, y, z such that at the plane S
(representing the surface of the body in the mentioned limit) it is z = 0 and
in the interior domain z < 0. The connection between the density of matter
ρ(x, y, z) and gravity potential V (x, y, z) is given by the Poisson equation

∆V (x, y, z) = 4π κ ρ(x, y, z), (1)

where κ is the gravitational constant; in the exterior domain (for z > 0) it
is ρ(x, y, z) = 0. The vertical component of the gravity field is
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g(x, y, z) = ∂zV (x, y, z) (2)

(it is equal to minus vertical component of the gravity acceleration) and its
surface value is

g(x, y) = g(x, y, 0); (3)

the surface value of density is defined as

ρ(x, y) = limz→0− ρ(x, y, z). (4)

We consider here the case that the input of the inverse problem is rep-
resented by the functions g(x, y) and ρ(x, y); the output is the density of
matter ρ(x, y, z) in the interior domain (for z < 0). Further, we do not
consider here the general solution of the inverse problem, but we restrict
ourselves to the characteristic solution of this problem. This is a particu-
lar solution chosen from among the infinitely many particular solutions of
the inverse problem to represent the whole class of the latter according to
certain criteria of maximal smoothness and simplicity (for details, see [1],
Chapter 9). The density of matter corresponding to this solution is called
the characteristic density and is denoted by ρc(x, y, z).

The expression for the characteristic density in the planar case can be ob-
tained from formulae (3.3) – (3.5) of [2] by performing the above mentioned
limit (where we use also formulae (2.44) – (2.50) of [2]). The derivation of
the resulting formula is lengthy, but simple, and therefore we omit it. The
resulting formula for the characteristic density reads (for z < 0)

ρc(x, y, z)=
1

2π

∫

S

dS′ E(
√

(x − x′)2 + (y − y′)2, |z|) ρ(x′, y′) +

+
1

4π κ

1

2π

∫

S

dS′ D(
√

(x − x′)2 + (y − y′)2, |z|) g(x′, y′), (5)

where dS′ = dx′ dy′ is the surface element. Integral kernels E(u, d) and
D(u, d) are given by

E(u, d) = C1(u, d) − 32 d 3 C4(u, d), (6)

D(u, d) = 640 d 3 C5(u, d), (7)

where (n ≥ 0)
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Cn(u, d) =
Pn(d/

√
u2 + d2)

√
u2 + d2

n+1
. (8)

Inserting the expressions for the Legendre polynomials we obtain

E(u, d) = d
(

F0(u, d) − 4
(

3F2(u, d) − 30F4(u, d) + 35F6(u, d)
))

, (9)

D(u, d) = 80
(

15F4(u, d) − 70F6(u, d) + 63F8(u, d)
)

, (10)

where (n ≥ 0)

Fn(u, d) =
dn

√
u2 + d2

n+3
. (11)

Now we transform formula (5) into the form suitable for numerical calcu-
lation. This is necessary, as integral kernels in this formula are not bounded
for the depth |z| approaching 0. Further, we want to avoid the integration
over an infinite domain. We first transform the integration variables

x′ = x + u cos ϕ, y′ = y + u sinϕ, (12)

where 0 ≤ u, 0 ≤ ϕ < 2π, and obtain

ρc(x, y, z)=
1

2π

∫

S

dσ E(u, |z|) ρ(x + u cos ϕ, y + u sinϕ) +

+
1

4π κ

1

2π

∫

S

dσ D(u, |z|) g(x + u cosϕ, y + u sinϕ), (13)

where dσ = ududϕ. For an integral kernel K(u, d) and function f(x, y) we
have

1

2π

∫

S

dσ K(u, d) f(x + u cos ϕ, y + u sinϕ) =

=

∫

∞

0

du uK(u, d)
1

2π

∫

2π

0

dϕ f(x + u cos ϕ, y + u sinϕ) =

=

∫

∞

0

du uK(u, d) Σ(x, y, u)f(∗, ∗), (14)

where operator Σ(x, y, u) is defined by the formula
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Σ(x, y, u)f(∗, ∗) =
1

2π

∫

2π

0

dϕ f(x + u cos ϕ, y + u sinϕ). (15)

Thus the function Σ(p, q, u)f(∗, ∗) is the mean value of function f(x, y) on
the circle with radius u and the centre at the point (p, q).

In the case that the integral kernel K(u, d) is Fn(u, d), we can perform
the transformation of integral variable (for d > 0)

u = d a(τ), a(τ) =

√
1 − τ2

τ
, (16)

where 0 < τ ≤ 1; thus

du u = − d 2

τ3
dτ,

1√
u2 + d2

=
τ

d
, (17)

and we obtain

∫

∞

0

du uFn(u, d) Σ(x, y, u)f(∗, ∗) =
1

d

∫

1

0

dτ τn Σ(x, y, d a(τ))f(∗, ∗). (18)

Then we have from (14), (18), (9) and (10)

1

2π

∫

S

dσ E(u, d) ρ(x + u cos ϕ, y + u sinϕ) =

=

∫

1

0

dτ
(

1 − 4 (3 τ 2 − 30 τ4 + 35 τ6)
)

Σ(x, y, d a(τ))ρ(∗, ∗), (19)

1

2π

∫

S

dσ D(u, d) g(x + u cos ϕ, y + u sinϕ) =

=
80

d

∫

1

0

dτ
(

15 τ4 − 70 τ6 + 63 τ8
)

Σ(x, y, d a(τ))g(∗, ∗). (20)

The last formula can be further transformed to remove the quantity d
from the denominator on the r.h.s. In the case that function g(x, y) and its
first partial derivatives are bounded, it can be easily shown that the function
Σ(x, y, u)g(∗, ∗) has bounded partial derivative with respect to variable u.
Therefore we introduce operator Σ′(x, y, u) defined by

Σ′(x, y, u)f(∗, ∗) = ∂u Σ(x, y, u)f(∗, ∗) (21)
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and using the identity

15 τ4 − 70 τ6 + 63 τ8 = ∂τ τ5 (1 − τ2) (3 − 7 τ 2) (22)

we get by integration per partes

1

2π

∫

S

dσ D(u, d) g(x + u cos ϕ, y + u sinϕ) =

=
80

d

∫

1

0

dτ
(

∂τ τ5 (1 − τ2) (3 − 7 τ 2)
)

Σ(x, y, d a(τ))g(∗, ∗) =

= − 80

d

∫

1

0

dτ τ5 (1 − τ2) (3 − 7 τ 2) ∂τ Σ(x, y, d a(τ))g(∗, ∗) =

= 80

∫

1

0

dτ τ3 (3 − 7 τ2)
√

1 − τ2 Σ′(x, y, d a(τ))g(∗, ∗). (23)

From (13), (19) and (23) we finally obtain (writing z = −d, d > 0)

ρc(x, y,−d)=

∫

1

0

dτ
(

1 − 4 τ2 (3 − 30 τ 2 + 35 τ4)
)

Σ(x, y, d a(τ))ρ(∗, ∗) +

+
20

π κ

∫

1

0

dτ τ3 (3 − 7 τ2)
√

1 − τ2 Σ′(x, y, d a(τ))g(∗, ∗). (24)

The formula (24) for the characteristic solution of the inverse problem
has the property that for input representing the gravity field of a single
spherical inhomogeneity (located under the surface of the body) with a con-
stant (difference) density (and surface density equal to zero), the resulting
characteristic density has the main extremum exactly in the centre of this
inhomogeneity. Another important property of this solution is the linear de-
pendence on the input, which allows to add the contributions from several
anomalous gravity fields.

Although the formula (24) was derived under the assumption that the in-
put functions g(x, y) and ρ(x, y) tend to zero outside some bounded domain
at the surface S, it gives reasonable results also for a wider class of these
functions. Integrals in this formula are well defined for any bounded func-
tion ρ(x, y) and for any bounded function g(x, y) with bounded first partial
derivatives. In the case that the function g(x, y) is a constant, the second
integral on the r.h.s. of (24) is zero. The same situation is even in the case
that g(x, y) is a linear function of x and y, since then Σ(x, y, u)g(∗, ∗) is a
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constant and Σ′(x, y, u)g(∗, ∗) is zero. Therefore, if the function g(x, y) is
given only in some bounded domain at the surface (what is usually the case
for a local inverse problem) and it is not close to zero at the boundary of
this domain, it is possible to change this funtion by subtraction of a suitably
chosen linear term to achieve that it will be near zero at this boundary (and
it can be put equal to zero outside this domain).

Similarly, it can be easily shown that for the function ρ(x, y) equal to a
constant, the first integral on the r.h.s. of (24) is equal to this constant (for
any depth d). Therefore, it is possible to modify also the function ρ(x, y)
by subtraction of a suitably chosen constant.

Finally, the fact that the characteristic solution is a linear integral trans-
formation of the input simplifies substantially the numerical calculation, as
it is not necessary to use any iterative methods that usually require much
computation time.
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