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Method for the solution
of the inverse problem of gravimetry
for a planetary body of arbitrary shape

V. Pohánka
Geophysical Institute of the Slovak Academy of Sciences1

A bs t r a c t : The inverse problem of gravimetry for a planetary body of arbitrary

smooth shape is solved by a suitable expression of the gravity potential in the interior of

the body, provided the solution of the interior Dirichlet and exterior Neumann problem

for the Laplace equation for the domain representing the interior of the body is known.

The obtained solution of the inverse problem is general: from this solution it is possible

to find any particular solution.
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1. Introduction

The formulation of the inverse problem problem of gravimetry treated
in this paper is as follows: gravity field is assumed to be generated by
the matter in the interior of a planetary body of arbitrary shape with a
sufficiently smooth surface; at the surface of the body the value of the
normal derivative (with respect to the surface) of the gravity potential is
given (as input); the problem is to find every density function (from some
given class of functions) generating the given external gravity field.

We denote the domain representing the interior (exterior) of the body as
Dint (Dext) and the surface of the body (the boundary of these domains)
as S. Potential of the gravity field V (r) and density of the matter ρ(r) are
defined in the whole space; they satisfy outside the body the equations
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r∈Dext : ρ(r) = 0, (1.1)

r∈Dext : ∆V (r) = 0 (1.2)

and the potential tends to zero at infinity; within the body they satisfy the
Poisson equation

r∈Dint : ∆V (r) = 4πκ ρ(r), (1.3)

where κ is the gravitational constant. As the potential and its gradient
are continuous in the whole space, their limits on the surface of the body
from inside and outside have to be the same. We shall assume that at
any point s of surface S the unit vector of the external normal to this
surface n(s) is defined, and this vector is a continuous function of s. If we
denote the inner (outer) limit of function f(r) at the point s of surface S as
[f(s)]int ([f(s)]ext) and the normal component of the inner (outer) limit of
the gradient of this function at the point s as [νsf(s)]int = n(s) · [∇sf(s)]int

([νsf(s)]ext = n(s) · [∇sf(s)]ext), the continuity conditions for the potential
at surface S are

[V (s)]int = [V (s)]ext, (1.4)

[νsV (s)]int = [νsV (s)]ext. (1.5)

The function on the r.h.s. of the last equation is the input of the inverse
problem; this function will be denoted as g(s), thus

[νsV (s)]ext = g(s); (1.6)

our aim is to find a formula expressing function ρ(r) in domain Dint.

2. Solution of the inverse problem

The idea of solution of the inverse problem is as follows. We express
potential V (r) in the interior of the body in the form

r∈Dint : V (r) = U0(r) + Q(r)U1(r) + Q(r)2 W (r), (2.1)
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where functions Q(r), U0(r), U1(r) and W (r) have in domain Dint bounded
derivatives of the second order and function Q(r) satisfies the following
conditions:

r∈Dint : Q(r) > 0, (2.2)

[Q(s)]int = 0, (2.3)

− [νsQ(s)]int ≥ c > 0, (2.4)

where c is a suitable constant. It is clear that there is a wide class of
functions satisfying conditions (2.2)–(2.4); the problem is rather to find
a sufficiently simple example of such a function (this will be treated in a
separate paper).

Conditions (2.2)–(2.4) imply that gradient of the function Q(r) at any
point s of surface S is parallel to the unit vector n(s); thus this vector can
be expressed in terms of function Q(r):

n(s) = −
1

K(s)
[∇sQ(s)]int, (2.5)

where

K(s) = |[∇sQ(s)]int|. (2.6)

Then it is clear that

[νsQ(s)]int = −K(s) (2.7)

and thus according to (2.4) function 1/K(s) is bounded.
Inserting expression (2.1) in conditions (1.4), (1.5) and using (2.3), (2.7)

we get

[U0(s)]int = [V (s)]ext, (2.8)

[νsU0(s)]int − K(s) [U1(s)]int = [νsV (s)]ext. (2.9)

These equations together with expression (2.1) indicate that it would be
advantageous to require that functions U0(r) and U1(r) are harmonic:

r∈Dint : ∆U0(r) = 0, (2.10)

r∈Dint : ∆U1(r) = 0. (2.11)
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The reason is that a function harmonic in some domain is uniquely deter-
mined by its value at the boundary of this domain; therefore the amount of
information needed to describe such a function completely is smaller than
for any other function with the same boundary value. Moreover, according
to (1.3) we have then for the density the expression

r∈Dint : ρ(r) =
1

4πκ
∆

(

Q(r)U1(r) + Q(r)2 W (r)
)

, (2.12)

in which function U0(r) does not appear.

Note also that conditions (2.8), (2.9) do not contain function W (r) and
therefore this function can be chosen arbitrarily (it has only to have in
domain Dint bounded derivatives of the second order).

Let us now assume that the Green function G(r, s) for the Dirichlet
problem for the Laplace equation in domain Dint and the Green function
D(r, s) for the Neumann problem for the Laplace equation in domain Dext

are known. Then we have for any function u(r) harmonic in Dint and such
that [u(s)]int is sufficiently smooth

r∈Dint : u(r) =
1

4π

∫

S

dσ G(r, s) [u(s)]int (2.13)

and for any function v(r) harmonic in Dext and such that [νsv(s)]ext is
sufficiently smooth

r∈Dext : v(r) =
1

4π

∫

S

dσ D(r, s) [νsv(s)]ext (2.14)

(dσ is the surface element of surface S at the point s).

In the next we shall need an expression for the function [νsu(s)]int, where
u(r) is given by (2.13). For any function f(r) defined in Dint and having a
sufficiently smooth limit [f(s)]int, operator ∇S

s
defined as

∇S
s
[f(s)]int = [∇sf(s)]int − n(s) n(s)·[∇sf(s)]int (2.15)

represents the tangential part of the gradient with respect to surface S at
the point s (note that the l.h.s. of (2.15) can be calculated knowing only the
limit value of function f(r) on the surface S). Further we define operator
T S(r, s) (for r∈Dint) by the formula

T S(r, s) f(∗) = f(r) − [f(s)]int − (r − s) · ∇S
s
[f(s)]int; (2.16)
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it is clear that for a harmonic function u(r), function T S(r, s)u(∗) (as a
function of r) is also harmonic and the normal component of the inner limit
of its gradient at the point s is the same as for the function u(r). Formula
(2.13) for the function T S(r, s)u(∗) reads

T S(r, s)u(∗) =
1

4π

∫

S

dσ′ G(r, s′) [T S(s′, s)u(∗)]int, (2.17)

where according to (2.16)

[T S(s′, s)u(∗)]int = [u(s′)]int − [u(s)]int − (s′ − s) · ∇S
s
[u(s)]int; (2.18)

then it can be shown that

[νsu(s)]int =
1

4π

∫

S

dσ′ [νsG(s, s′)]int [T S(s′, s)u(∗)]int (2.19)

and the integral on the r.h.s. exists, as the integral kernel [νsG(s, s′)]int

has a singularity of the type |s − s
′|−3, while function [T S(s′, s)u(∗)]int

behaves (for sufficiently smooth function [u(s)]int) in the neighbourhood of
this singularity as |s − s

′|2.

In the case of formula (2.14) we can exchange the limit to surface S and
integration and we obtain

[v(s)]ext =
1

4π

∫

S

dσ′ [D(s, s′)]ext [νs
′v(s′)]ext; (2.20)

here the integral kernel [D(s, s′)]ext is weakly singular.
Now we are able to express the dependence of function U1(r) on the

input g(s). According to (1.2) we can write formula (2.20) for the function
V (r); using formulae (1.6) and (2.8) we get

[U0(s)]int =
1

4π

∫

S

dσ′ [D(s, s′)]ext g(s′) (2.21)

and formula (2.19) for the function U0(r) reads

[νsU0(s)]int =
1

4π

∫

S

dσ′ [νsG(s, s′)]int [T S(s′, s)U0(∗)]int. (2.22)

From formulae (2.9) and (1.6) we get

[U1(s)]int =
1

K(s)

(

[νsU0(s)]int − g(s)
)

(2.23)
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and formula (2.13) for the function U1(r) reads (r∈Dint)

U1(r) =
1

4π

∫

S

dσ G(r, s) [U1(s)]int. (2.24)

Therefore, the density in the interior of the body is given by (2.12), where
function U1(r) is given by (2.21)–(2.24). We see that the density is the sum
of two parts: the first part is uniquely determined by the input (the surface
gravity field), while the second part depends on the function W (r) which
can be chosen arbitrarily. Thus this second part represents (in an exact
way) the nonuniqueness of the inverse problem of gravimetry. It has to be
noted that this second part of density generates the zero exterior gravity
field.

3. Solution with extended input

In many cases the surface value of the density (thus function [ρ(s)]int)
is also known. Therefore, it will be suitable to modify the above presented
solution of the inverse problem to account for the additional knowledge.

This can be done very simply as follows: we write function W (r) in the
form

r∈Dint : W (r) = U2(r) + Q(r)Z(r), (3.1)

where functions U2(r) and Z(r) have in domain Dint bounded derivatives
of the second order. Then we get from (2.1)

r∈Dint : V (r) = U0(r) + Q(r)U1(r) + Q(r)2 U2(r) + Q(r)3 Z(r) (3.2)

and using (2.10) and (2.11) we obtain after some calculation (r∈Dint)

∆V (r) = (∆Q(r))U1(r) + 2 (∇rQ(r)) · (∇rU1(r)) +

+2
[

Q(r)∆Q(r) + (∇rQ(r))2
]

U2(r) +

+4Q(r) (∇rQ(r)) · (∇rU2(r)) + Q(r)2 ∆U2(r) +

+3Q(r)
[

Q(r)∆Q(r) + 2 (∇rQ(r))2
]

Z(r) +

+6Q(r)2 (∇rQ(r)) · (∇rZ(r)) + Q(r)3 ∆Z(r). (3.3)

In the limit to surface S we have according to (2.3) and (2.5)
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[∆V (s)]int = [∆Q(s)]int [U1(s)]int + 2 [∇sQ(s)]int · [∇sU1(s)]int +

+2 [∇sQ(s)]2int [U2(s)]int =

= L(s) [U1(s)]int − 2K(s) [νsU1(s)]int + 2K(s)2 [U2(s)]int, (3.4)

where we denoted

L(s) = [∆Q(s)]int. (3.5)

Using formula (1.3) we get the condition

L(s) [U1(s)]int − 2K(s) [νsU1(s)]int + 2K(s)2 [U2(s)]int =

= 4πκ [ρ(s)]int (3.6)

and we see that we can require that also function U2(r) is harmonic:

r∈Dint : ∆U2(r) = 0. (3.7)

Note that condition (3.6) does not contain function Z(r) and therefore
this function can be chosen arbitrarily (it has only to have in domain Dint

bounded derivatives of the second order).

Then we can calculate function U2(r) as follows: from (3.6) we have

[U2(s)]int =

=
1

2K(s)2

(

4πκ [ρ(s)]int − L(s) [U1(s)]int + 2K(s) [νsU1(s)]int

)

, (3.8)

where function [U1(s)]int is given by (2.23), and, in analogy with (2.22)

[νsU1(s)]int =
1

4π

∫

S

dσ′ [νsG(s, s′)]int [T S(s′, s)U1(∗)]int. (3.9)

Function U2(r) is then given by (r∈Dint)

U2(r) =
1

4π

∫

S

dσ G(r, s) [U2(s)]int (3.10)

and the density is expressed by

r∈Dint : ρ(r) =
1

4πκ
∆

(

Q(r)U1(r) + Q(r)2 U2(r) + Q(r)3 Z(r)
)

. (3.11)
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Therefore, in this case the density in the interior of the body is given by
(3.11), where function U1(r) is given by (2.21)–(2.24) and function U2(r)
by (3.8)–(3.10). We see that the density is again the sum of two parts: the
first part is uniquely determined by the input (the surface gravity field and
the surface value of density), while the second part depends on the function
Z(r) which can be chosen arbitrarily.

In conclusion, it has to be noted that the presented method for the solu-
tion of the inverse problem of gravimetry for a planetary body of arbitrary
smooth shape is a generalization of the method treated in [1] for the body of
spherical shape. In the latter case function Q(r) can have very simple form:
if the origin of coordinates is at the centre of the body and the radius of the
body is R, domain Dint is given by the inequality r

2 < R2 and conditions
(2.2)–(2.4) are satisfied by the function 1 − r

2/R2. In this case the second
and third term on the r.h.s. of (3.2) is a biharmonic and 3-harmonic func-
tion, respectively. For arbitrary nonspherical shape of the body, these two
terms have not this simple behaviour with respect to the Laplace operator;
nevertheless, also in this case any term in the decomposition (3.2) can be
considered as simpler than the any of the succeeding terms.
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