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Abstract: We have developed a simple method to determine completely the model pa-

rameters of a buried dipping fault from gravity data (depths to the centers of the upper

and lower portions of the faulted thin slab, dip angle, and amplitude coefficient). The

method is based on defining the anomaly values at the origin and at four symmetrical

points around the origin on the gravity anomaly profile. By defining these five pieces of

information, the dip angle is determined for each value of the depth of the lower portion

of the faulted thin slab by solving iteratively one nonlinear equation of the form f(α) = 0.

The computed dip angles are plotted against the values of the depth representing a con-

tinuous depth-dip curve. The solution for the depth to the lower portion of the faulted

thin slab (down-thrown block) and the dip angle of the buried fault is read at the common

intersection of the depth-dip curves. Knowing the depth to the center of the lower portion

of the faulted layer and the dip angle, the problem of determining the depth to the center

of the upper portion of the faulted slab (up-thrown block) is transformed into the problem

of solving iteratively a nonlinear least-squares equation, f(z) = 0. Because the depths

and the dip angle are known, the amplitude coefficient, which depends on the thickness

and density contrast of the thin slab, is determined using a linear least-squares equation.

The method is applied to theoretical data with and without random errors. The validity

of the method is tested on real gravity data from Egypt. In all cases examined, the model

parameters obtained are in good agreement with the actual ones and with those given in

the published literature.

Key words: gravity interpretation, dipping faults, iterative methods, least squares
method, depth-curves method, noise

1. Introduction

The dipping fault model is frequently used in gravity interpretation to find
the depth and the dip angle of a class of faulted structures. Estimation
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of these parameters from gravity anomalies has drawn considerable atten-
tion. Fault interpretation using gravity modeling methods, e.g., 2D (Tanner,
1967), 2.5D (Chakravarthi, 2011), or 3D (Cordell and Henderson, 1968) in-
volves personal judgments and requires density information as part of the
input, along with depth and dip angle information obtained from geological
and/or other geophysical data. Other methods use fixed simple geometry
for interpreting gravity anomalies due to dipping faults (Geldart et al., 1966;
Paul et al., 1966; Green, 1976; Thompson, 1982; Gupta, 1983; Lines and
Treitel, 1984; Abdelrahman et al., 1989; Gupta and Pokhriyal, 1990; Reid
et al., 1990; Abdelrahman et al., 2003; Phillips et al., 2007; Utyupin and
Mishenin, 2012). The advantage of fixed geometry methods over continuous
modeling methods is that they require neither density, dip angle, nor depth
information, and they can be applied if little or no factual information other
than the gravity data is available.

Very recently, Abdelrahman et al. (2013), Essa (2013) and Abdelrah-
man and Essa (2015) developed methods to determine only the depth to
the upper portion of the faulted thin slab as well as the dip angle of the
faulted structure from gravity data using numerical techniques. However,
the drawback of these methods is that they assume that the throw of the
fault is extremely large, i.e., the depth to the lower portion of the thin slab
approaches infinity. This assumption will lead definitely to large errors in
estimating the model parameters of the faulted structure from real gravity
data.

In this paper, we have developed a simple method to determine com-
pletely the model parameters of a buried dipping fault from the residual
gravity anomaly. Using the anomaly values at the origin and four symmet-
rical points on the gravity anomaly profile, the problem of determining the
depth to the center of the lower portion of the thin slab and the dip angle
is transformed into the problem of solving one nonlinear equation to con-
struct depth-dip angle curves. Knowing the depth and the dip angle com-
puted from the constructed curves, the problem of determining the depth
to the center of the upper portion of the faulted thin slab determination is
transformed into the problem of solving iteratively a nonlinear least-squares
equation, whereas the amplitude coefficient is determined using a simple
linear least-squares equation. The accuracy of the result abstained by the
procedures depends upon the accuracy to which the origin of the residual
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anomaly profile can be determined from geological and/or other geophysical
data. Also for this method to be valid, we assume that the thickness of the
faulted layer is small compared to the depth of the up-thrown faulted block,
i.e. the layer can be approximated by a thin sheet located at its center. The
thin sheet approximation is valid and correct within 2% if the thickness is
equal to or less than the depth. The method is applied to theoretical data
with and without random errors. The validity of the method is tested on
real gravity data from Egypt.

2. The method

The formula for the residual gravity anomaly generated along the profile
normal to the strike of a 2-D dipping faulted thin slab having infinite strike
length is given by the following equation (Telford et al., 1976):

g(xi, z, h, α) = K

[
π + atan

(
xi
z

+ cotα

)
− atan

(
xi
h

+ cotα

)]
, (1)

where z and h are the depths to the centers of the upper and the lower
portions of the layer, respectively, α is the angle of dip measured counter-
clockwise from surface, K = 2γσt, is the amplitude coefficient related to the
thickness (t) and density contrast (σ) of the faulted slab, γ is the universal
gravitational constant, and xi is the horizontal coordinate position. The
two-dimensional gravity dipping fault model is shown in Fig. 1.

Fig. 1. Geometry of the dipping faulted thin slab model.
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Equation (1) can be written as:

g(xi, z, h, α) =
g(0)

π

[
π + atan

(
xi
z

+ cotα

)
− atan

(
xi
h

+ cotα

)]
, (2)

where g(0) = Kπ is the anomaly value at the origin of the residual anomaly
profile.

Equation (2) gives the following values at xi = ±N and ±M :

g(N) =
g(0)

π

[
π + atan

(
N

z
+ cotα

)
− atan

(
N

h
+ cotα

)]
, (3)

g(−N) =
g(0)

π

[
π + atan

(−N

z
+ cotα

)
− atan

(−N

h
+ cotα

)]
, (4)

g(M) =
g(0)

π

[
π + atan

(
M

z
+ cotα

)
− atan

(
M

h
+ cotα

)]
, (5)

g(−M) =
g(0)

π

[
π + atan

(−M

z
+ cotα

)
− atan

(−M

h
+ cotα

)]
, (6)

where g(N), g(−N), g(M), and g(−M) are the anomaly values at four
symmetrical points around the origin.

Equations (3–6), can be simplified as:

tan

[
πD(N) + atan

(
N

h
+ cotα

)]
− cotα =

N

z
, (7)

tan

[
πD(−N) + atan

(−N

h
+ cotα

)]
− cotα =

−N

z
, (8)

tan

[
πD(M) + atan

(
M

h
+ cotα

)]
− cotα =

M

z
, (9)

tan

[
πD(−M) + atan

(−M

h
+ cotα

)]
− cotα =

−M

z
, (10)

where

D(N) =
g(N)

g(0)
− 1 , D(−N) =

g(−N)

g(0)
− 1 ,
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D(M) =
g(M)

g(0)
− 1 , D(−M) =

g(−M)

g(0)
− 1 .

Adding Eq. (7) to Eq. (8), and adding Eq. (9) to Eq. (10) will eliminate (z)
and the following equations are obtained:

tan

[
πD(N) + atan

(
N

h
+ cotα

)]
+

+tan

[
πD(−N) + atan

(−N

h
+ cotα

)]
= 2cotα , (11)

and

tan

[
πD(M) + atan

(
M

h
+ cotα

)]
+

+tan

[
πD(−M) + atan

(−M

h
+ cotα

)]
= 2cotα . (12)

Using equations (11–12), we obtain after simple mathematical manipu-
lation the following nonlinear equation in the dip angle (α) and the depth
to the center of the lower portion of the faulted thin slab (h).

α = datan

(
tan
〈
atan(T1 + T2 − T3)− πD(−M)

〉
+

M

h

)
, (13)

where

T1 = tan

[
πD(N) + atan

(
N

h
+ cotα

)]
,

T2 = tan

[
πD(−N) + atan

(−N

h
+ cotα

)]
,

T3 = tan

[
πD(M) + atan

(
M

h
+ cotα

)]
.

The dip angle (α) can be obtained by solving Eq. (13) using a simple
iteration method (Press et al., 2007) if h is known. The iterative form of
equation (13) is given as:

αf = f(αj) , (14)

where (αj) is the initial dip and (αf ) is the revised dip; (αf ) will be used
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as the αj for the next iteration. The iteration stops when |αf − αj | ≤ e,
where e is a small predetermined real number close to zero.

Thus, the dip angle of the faulted thin slab is determined by solving one
non linear equation f(α) = 0. Any initial guess for α works well because
there is always one minimum, provided that (h) remains fixed in the process.

However, Eq. (13) can be used also not only to determine the dip angle
(α) of the buried structure but also to simultaneously estimate the depth
(h) to the center of the lower block of the faulted structure. The procedure
is as follows:

1. Determine the origin of the observed gravity anomaly profile (xi = 0)
using geological and/or other geophysical data.

2. Digitize the observed gravity anomaly profile at several points with a
suitable interval.

3. Eq. (13) is then applied to the input data yielding dip solutions α for all
possible h values for fixed N and M values. The computed α values are
plotted against h values representing a continuous depth-dip curve. The
depth-dip curves should intersect at a single point, i.e., the value of α at
the point of intersection is the dip angle of the faulted structure, and the
value of h gives the depth to the center of the lower portion of the faulted
thin slab. Theoretically, any two curves associated with two different
values of N and M are just enough to simultaneously determine α and
h. In practice, more than two values of N and M might be necessary
because of the presence of noise in data.

Substituting the computed depth (hc) and the computed dip angle (αc)
as fixed parameters in Eq. (2), we obtain:

g(xi, z) =
g(0)

π
W (xi, z) , (15)

where W (xi, z) =

[
π + atan

(
xi
z

+ cotαc

)
− atan

(
xi
hc

+ cotαc

)]
.

Applying the least-squares method, the unknown z in Eq. (15) can be
obtained by minimizing:

ϕ(z) =
P∑
i=1

[
L(xi)− g(0)

π
W (xi, z)

]2
, (16)

where L(xi) denoted the observed residual gravity anomaly at xi.
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Setting the derivative of φ(z) to zero with respect to z leads to:

f(z) =
P∑
i=1

[
L(xi)− g(0)

π
W (xi, z)

]
W ∗(xi, z) = 0, P = 1, 2, 3 . . . , (17)

where W ∗(xi, z) =
d

dz
W (xi, z) .

Eq. (17) can be solved for z using the standard methods for solving non-
linear equations. Here Eq. (17) is solved by a simple iteration method (Press
et al., 2007). The iterative form of Eq. (17) is given as:

zf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P∑
i=1

⎛
⎜⎝ xi L(xi)

1 +
(
xi
zj

+ cot αc

)2
⎞
⎟⎠

P∑
i=1

g(0)

π

⎡
⎢⎢⎣xi
(
π + atan

(
xi
zj

+ cot αc

)
− atan

(
xi
hc

+ cot αc

)
zj2
[
1 +

(
xi
zj

+ cot αc

)2]
⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

, (18)

where zj is the initial depth parameter and zf is the revised depth parame-
ter; zf will be use as the zj for the next iteration. The iteration stops when
|zf − zj | ≤ e, where e is a small predetermined real number close to zero.

Thus, the depth to the center of the upper portion of the faulted thin
slab is determined by solving one non linear equation f(z) = 0. Any initial
guess for (z) works well because there is always one minimum, provided
that (αc) and (hc) remain fixed in the process.

Substituting the depths (zc) and (hc) and the dip angle (αc) in Eq. (1)
as fixed parameters, we obtain:

g(xi) = K

[
π + atan

(
xi
zc

+ cotαc

)
− atan

(
xi
hc

+ cotαc

)]
. (19)

Finally, applying the least-squares method to Eq. (19), the unknown
amplitude coefficient (K) can be determined from:

Kc =

P∑
i=1

L(xi)

[
π + atan

(
xi
zc

+ cotαc

)
− atan

(
xi
hc

+ cotαc

)]
P∑
i=1

[
π + atan

(
xi
zc

+ cotαc

)
− atan

(
xi
hc

+ cotαc

)]2 . (20)
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In this way, the problem of determining the depth (h) and the dip angle
(α) is transformed into the problem of constructing the depth-dip curves and
the problem of depth (z) determination is transformed into the problem of
solving a nonlinear least-squares equation, f(z) = 0, whereas the amplitude
coefficient (K) is determined using a simple linear least-squares equation.
Eqs. (13, 18, 20) are ready for determining the model parameters of a buried
faulted structure from observed gravity data using a personal computer.

An interpretation scheme based on the above equations for analyzing
field data is illustrated in Fig. 2.

Fig. 2. Generalized scheme for depths, dip angle, and amplitude coefficient determination.
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3. Theoretical examples:

3.1. Error response of the method

Fig. 3 shows a synthetic gravity anomaly due to a dipping fault (K =
100 mGal, z = 8 km, h = 12 km, α = 75◦, profile length = 40 km, and
sample interval = 1 km). The synthetic gravity anomaly was interpreted
using our method (Eqs. (13, 18, 20)) to determine, respectively, the depth
to the center of the lower portion, the dip angle, the depth to the center
of the upper portion, and the amplitude coefficient of the faulted structure.
Fig. 4 shows the intersection of the depth-dip curves at the correct location
h = 12 km and α = 75◦. The computed depth to the center of the upper
portion and the amplitude coefficient determined from Eqs. (18, 20) were,
respectively, z = 8 km, and K = 100 mGal. Perfect results are obtained
when using synthetic noise-free data.

Moreover, the synthetic gravity anomaly was contaminated with 5% ran-
dom Gaussian error using the following equation:

Fig. 3. A synthetic gravity anomaly with and without random errors of a buried dipping
fault thin slab. The model parameters are: K = 100 mGal, z = 8 km, h = 12 km, and
α = 75◦. The computed gravity anomaly using the estimated model parameters from
noisy data is also illustrated.
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Fig. 4. Interpretation of the data in Fig. 3 using the depth-dip curves method.

Δgrnd1(xi) = Δg1(xi) [1 + (RND(i)− 0.5) ∗ 0.05] , (21)

where Δgrnd1(xi) is the contaminated anomaly value at xi and RND(i) is
a pseudo-random number whose range is (0, 1). The interval of the pseudo
random number is an open interval, i.e. it does not include the extremes
values 0 and 1.

The depth-dip curves method (Eq. 13) was then applied to the noisy
gravity anomaly (Fig. 3). The results are plotted in Fig. 5. In this case, the
depth-dip curves intersect each other at h = 12.5 km and α = 74.8◦. Using
these values, Eqs. (18, 20) were then used to estimate the depth to the center
of the upper portion and the amplitude coefficient of the fault. The result is:
z = 8.3 km and K = 100.3mGal. The calculated gravity anomaly using the
estimated model parameters is shown also in Fig. 3. This figure shows the
numerical fitting between the noisy and the calculated synthetic anomaly
values. The best fit is considered as a good criterion for accepting the
solution in this example and noisy field conditions. The solution for all the
model parameters is in good agreement with the actual model parameters.

142



Contributions to Geophysics and Geodesy Vol. 49/2, 2019 (133–151)

Fig. 5. Interpretation of the data in Fig. 3 after adding 5% random errors using the
present depth-dip curves method.

This demonstrates that our method will give reliable results when applied
to noisy gravity data as well.

3.2. Effect of wrong origin

Uncertain knowledge of the origin may lead to error in the model parameters
(z, h, α,K) when interpreting real data. In this subsection we investigate
this effect. The origin of the dipping faulted thin slab was assumed to be
chosen incorrectly by introducing errors (offset) of ±500m in the horizontal
coordinate xi using synthetic data (K = 100 mGal, z = 8 km, h = 12 km,
α = 75◦, profile length = 40km, and sample interval = 1km). Following the
same interpretation method, the results are shown in Fig. 6 and Table 1.

It was verified numerically that Eqs. (13, 18, 20) give an acceptable error
of 7.5% in the model parameters. Fig. 7 shows the gravity anomaly profiles
computed using the estimated model parameters (Table 1) compared with
the synthetic gravity anomaly. In spite of the error in the calculated model
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Fig. 6. Data interpretation of Fig. 3 in which offset of ±0.5 km is introduced into the
horizontal position xi.
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Table 1. Numerical results obtained from synthetic example (K = 100 mGal, z = 8 km,
h = 12 km, α = 75◦, and profile length = 40 km) after adding ±500 m errors into the
horizontal coordinate xi.

Parameters Offset = –500 m Offset = +500m

Computed % of Computed % of
values error values error

Depth z (km) 7.4 −7.5 8.61 7.6

Depth h (km) 11.2 −6.7 12.8 6.7

Dip angle α (degrees) 80.1 6.8 69.7 −7.1

Amplitude coefficient K (mGal) 99.5 0.5 100.5 0.5

parameters, the overall fitting between the computed and actual gravity
anomalies in case the offset is ±500m is clear. On the other hand when us-
ing larger offset values, the method may result in an instable interpretation
curves. However, since the interpretation requires only a relatively short

Fig. 7. Synthetic and calculated gravity anomalies using the estimated model parameters
after introducing offset of ±500 m.
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profile length, the problem may be solved effectively and economically by
increasing the number of measurements made within the restricted length
of the profile. At the same time, using a relatively short length of profile,
results in a very high rejection of neighboring disturbances. Generally, the
accuracy of the result obtained by the present method depends upon the ac-
curacy of which the origin of the fault is determined from geological and/or
other geophysical.

3.3. Effect of using different observation points N ′s and M ′s

In the above examples, we have used a fixed M value and different N
values to construct the depth-dip curves. In this subsection, we test a large
range of N ′s and M ′s to investigate whether or not our method would give
consistent results.

The synthetic gravity anomaly due to a dipping fault (K = 100 mGal,
z = 8 km, h = 12 km, α = 75◦, profile length = 40 km, and sample interval
= 1km) shown previously in Fig. 3 was interpreted using the present depth-
dip curves method using a large range of N ′s and M ′s. The results are
shown in Fig. 8. It is verified that the depth-dip curves intersect at the
correct solution h = 12 km and α = 75◦. The depth-dip curves shown in
Fig. 8 are similar to the depth-dip curves shown in Fig. 4 but they are not
identical because of using different N and M values. This demonstrates
that our method will give consistent results when using a large range of N ′s
and M ′s.

4. Field example

A Bouguer gravity anomaly profile over the Gazal fault, south Aswan, Egypt
is interpreted to determine the model parameters (z, h, α,K). The Bouguer
anomaly profile over Gazal fault is shown in Fig. 9. The fault affected
both the basement and sedimentary rocks and crops out at the surface
(Abdelrahman et al., 1999). The depth to the basement is found to be
about 200 m as obtained from drilling information (Evans et al., 1991). In
this example, the fault trace point is determined on the gravity profile, as
usual, by projecting the point of intersection between the fault and the
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Fig. 8. Interpretation of the data in Fig. 3 using the depth-dip curves method applying a
large range of N ′s and M ′s values.

Fig. 9. Gazal Fault gravity anomaly, south Aswan, Egypt.
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ground surface vertically. The gravity profile has been digitized at an in-
terval of 62.5 m. Eq. (13) is applied to the gravity anomaly profile using
five combinations of N and M points to construct the depth-dip curves
(Fig. 10). This figure shows that the curves can be interpreted to intersect
at h = 315 m and α = 65◦. Eqs. (18, 20) are used then to determine the
depth to the center of the upper portion of the fault slab and the amplitude
coefficient. The complete interpretation is: z = 162m, h = 315m, α = 65◦,
and K = 19.4 mGal. This suggests that Gazal fault resembles a dipping
fault (α = 65◦) where the center of the upper portion of the faulted slab is
buried at a depth of 162m and the center of the lower portion of the faulted
slab is located at a depth of 315 m. The depth to the center to the upper
portion of the faulted bed and the dip angle obtained by the present method
generally agrees well with those obtained from drilling information and by
Abdelrahman et al. (2013), Essa (2013) and Abdelrahman and Essa (2015)
as summarized in Table 2. However, the amplitude coefficient obtained by

Fig. 10. Data interpretation of Fig. 9 using the depth-dip curves method.
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Table 2. Comparative results of the Gazal field example.

Parameters
Abdelrahman
et al. method

(2013)

Essa method
(2013)

Abdelrahman and
Essa method (2015)

present
method

Depth z (m) 173 208 202 162

Depth h (m) – – – 315

Dip angle α (Degrees) 62.5 40 58 65

Amplitude coefficient
K (mGal)

– – 2.4 19.42

the present method is extremely larger than that obtained by Abdelrahman
and Essa (2015). This is because of the fact that the gravity anomaly over
Gazal fault consists of a residual component due to Gazal fault and a re-
gional component represented by a first order polynomial (Abdelrahman and
Essa, 2015). It is evident from this field example that our method gives a
complete insight from gravity data concerning the nature of Gazal fault
structure.

5. Conclusions

The problem of determining the depths to the center of the upper and
lower portions, dip angle, and amplitude coefficient of a buried dipping
faulted thin slab from observed gravity data can be solved using the present
method. The present approach is capable of determining completely the
model parameters of the buried structure from the gravity data given in
a small area over the buried structure, i.e., from the small segment of the
gravity profile above the origin. The depths, dip angle, and the amplitude
coefficient obtained by present method might be used to gain a complete
geologic insight concerning the subsurface. The advantages of the present
method over previous graphical and numerical techniques used to interpret
gravity data due to dipping faults are: 1) all the four model parameters
can be obtained, and 2) the method gives good results when the gravity
anomaly is contaminated with Gaussian random noise.

Finally, we envisage the newly introduced method will result in the future
development of new methods to interpret completely gravity gradient data
due to dipping faults.
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