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Abstract: An easy and very simple method to interpret residual gravity anomalies due to

simple geometrical shaped models such as a semi-infinite vertical rod, an infinite horizontal

rod, and a sphere has been proposed in this paper. The proposed method is mainly

based on the quadratic curve regression to best-estimate the model parameters, e.g. the

depth from the surface to the center of the buried structure (sphere or infinite horizontal

rod) or the depth from the surface to the top of the buried object (semi-infinite vertical

rod), the amplitude coefficient, and the horizontal location from residual gravity anomaly

profile. The proposed method has been firstly tested on synthetic data set corrupted

and contaminated by a Gaussian white noise level to demonstrate the capability and the

reliability of the method. The results acquired show that the estimated parameters values

derived by this proposed method are very close to the assumed true parameters values.

Next, the validity of the presented method is demonstrated on synthetic data set and 3

real data sets from Cuba, Sweden and Iran. A comparable and acceptable agreement is

indicated between the results derived by this method and those from the real field data

information.

Key words: gravity anomaly, sphere-like structure, semi-infinite vertical rod-like struc-
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1. Introduction

The gravity method is one of the first geophysical techniques used in oil
and gas exploration. Most of the geological structures in oil and mineral
exploration can be approximated by simple geological structures such as
a fault, a sphere, a cylinder, a sheet, semi-infinite vertical rod, an infi-
nite horizontal rod or a dike. According to this approximation, different
methods have been already introduced to interpret gravity field anomalies
due to simple geometric models in an attempt to best-estimate the gravity
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parameters values, e.g. the depth to the buried body and the amplitude co-
efficient. Those interpretation methods include, linear optimization-simplex
algorithm (Asfahani and Tlas, 2015), neural network modeling (Abedi et al.,
2010), differential evolution algorithm (Ekinci et al., 2016), graphical meth-
ods (Nettleton, 1962 and 1976), ratio methods (Bowin et al., 1986; Abdel-
rahman et al., 1989), Fourier transform (Odegard and Berg, 1965; Sharma
and Geldart, 1968), Euler deconvolution (Thompson, 1982), neural network
(Elawadi et al., 2001), Mellin transform (Mohan et al., 1986), least-squares
minimization approaches (Gupta, 1983; Lines and Treitel, 1984; Abdelrah-
man, 1990; Abdelrahman et al., 1991; Abdelrahman and El-Araby, 1993;
Abdelrahman and Sharafeldin, 1995a), Werner deconvolution (Hartman et
al., 1971; Jain, 1976). Kilty (1983) extended the Werner deconvolution
technique to the analysis of gravity data using both the residual anomaly
and its first and second horizontal derivatives, Ku and Sharp (1983) fur-
ther refined the method by using iteration for reducing and eliminating
the interference field and then applied Marquardt’s non-linear least squares
method to further refine automatically the first approximation provided by
deconvolution. Salem and Ravat (2003) presented a new automatic method
for the interpretation of magnetic data, called AN-EUL. Their method is
based on a combination of the analytic signal and the Euler deconvolution
method. With the AN-EUL, both the location and the approximate geom-
etry of a magnetic source can be deduced. Fedi (2007) described the theory
for the gravity and magnetic fields and their derivatives for any order, and
proposed a method called depth from extreme points (DEXP) to interpret
any potential field. The DEXP method allows estimating of source depths,
density and structural index from the extreme points of a 3D field scaled
according to specific power laws of the altitude. Salem and Smith (2005)
presented an alternative method to estimate both the depth and model
type using the first order local wave number approach without the need
for third order derivatives of the field. In their method, a normalization of
the first order local wave-number anomalies is achieved, and a generalized
equation to estimate the depth of some 2D magnetic sources regardless of
the source structure is obtained. Silva and Barbosa (2003) derived the ana-
lytical estimators for the horizontal and vertical source position in 3D Euler
deconvolution as a function of the x, y, and z derivatives of the magnetic
anomaly within a data window. Barbosa et al. (1999) proposed a new crite-
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rion for determining the structural index, based on the correlation between
the total magnetic field anomaly and the estimates of an unknown base
level. Salem et al. (2008) developed a new method for the interpretation of
gridded magnetic data, which based on derivatives of the tilt angle, where
a simple linear equation, similar to the 3D Euler equation can be obtained.
Their method estimates both the horizontal location and the depth of mag-
netic bodies, but without specifying prior information about the nature of
the sources. Fedi et al. (2009) proposed a new method based on a 3D mul-
tiridge analysis of potential field. The new method assumes a 3D subset in
the harmonic region and studies the behavior of the potential field ridges,
which are built by joining extreme points of the analyzed field computed at
different altitudes.

However, only few techniques have treated the determination of shape of
the buried structure. These techniques include, for example, Walsh trans-
form (Shaw and Agarwal, 1990), least-squares methods (Abdelrahman and
Sharafeldin, 1995b; Abdelrahman et al., 2001a, b), constrained and penalized
nonlinear optimization technique (Tlas et al., 2005). Generally, the deter-
mination of the depth, shape factor, and amplitude coefficient of the buried
structure is performed by these methods from residual gravity anomaly,
where the accuracy of the results, obtained by them, depends on the accu-
racy in which the residual anomaly can be separated and isolated from the
observed gravity anomaly.

Recently, Asfahani and Tlas (2012) proposed an efficient approach to
interpret the residual gravity anomalies in order to estimate the gravity
parameters, e.g. depth, amplitude coefficient and geometric shape factor of
simple buried bodies, such as a sphere, horizontal cylinder and vertical cylin-
der. The method is based on the non-convex and nonlinear Fair function
minimization and the adaptive simulated annealing, stochastic optimization
algorithm. The main advantage of this approach is that the buried body
shape is considered as unknown factor and can be estimated as an inde-
pendent parameter. However, this approach suffers from the discrepancy
and has some disadvantages, because it sometimes necessitates the use of
multi-starting or initial guesses of parameters in order to assure the global
convergence or to reach the global minima of the objective function.

A recent publication byAsfahani and Tlas (2015) focused on a new
practical interpretation methodology for interpreting residual gravity field
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anomalies and best-estimating of model parameters values, e.g. the depth to
the top or to the center of the body and the amplitude coefficient related to
a buried sphere or a cylinder-like structure. The method uses the deconvolu-
tion technique to avoid the local minima, where the nonlinear optimization
problem describing the suitable simple geometric-shaped model of structure
is transformed into a linear optimization one. The linear problem is there-
after solved by the very well-known algorithm in linear optimization called
the simplex algorithm of Dantzig (Phillips et al., 1976) in order to definitely
reach the global minima.

In this paper, an easy and simple interpretation method based on quad-
ratic polynomial regression is proposed for interpreting residual gravity field
anomalies and for best-estimating of model parameters values, e.g. the depth
to the top or to the center of the body, the horizontal location and the
amplitude coefficient related to a buried sphere, semi-infinite vertical rod
or infinite horizontal rod. The reliability and capability of the proposed
interpretation method is demonstrated using synthetic data set and con-
taminated by a white Gaussian noise level of 25%. The results acquired
show that the estimated parameter values derived by this method are very
close to the assumed true values of parameters.

The validity of this method is also demonstrated using three real field
gravity anomalies taken from Cuba, Sweden and Iran. Comparable and ac-
ceptable agreements are shown between the results derived by the proposed
method and those obtained by other interpretation methods. Moreover, the
depth obtained by such a proposed method is found to be in high accordance
with that obtained from the real field data information.

2. Theory

A theoretical and synthetic residual gravity anomaly related to various ge-
ological models such as a sphere, a semi-infinite vertical rod and an infinite
horizontal rod have been treated in this research, in order to demonstrate
the validity and the applicability of the proposed interpretation method.

The general expression of the residual gravity anomaly (V ) at any point
M(x) along the x-axis of a semi-infinite vertical rod-like structure, an in-
finite horizontal rod-like structure and a sphere-like structure, in a Carte-
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sian coordinate system (Fig. 1) can be given according to Nettleton (1962),
Gupta (1983) as:

Vz(xi) =
k(

(xi − x0)
2 + z2

)q (i = 1, ..., N), (1)

where q is the geometrical shape factor of the buried structure given as:
q = 1.5 for a sphere, q = 0.5 for a semi-infinite vertical rod and q = 1
for an infinite horizontal rod, x0 is the horizontal location of the buried
body, z is the depth from the surface to the center of the buried structure
(sphere or infinite horizontal rod) or the depth from the surface to the top of
the buried object (semi-infinite vertical rod), k is the amplitude coefficient

Fig. 1. Diagrams of simple geometrical structures (sphere, semi-infinite vertical rod and
infinite horizontal rod).
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given by: k = 4
3πGρr3z for a sphere, k = πGρr2 for a semi-infinite vertical

rod and k = 2πGρr2z for an infinite horizontal rod, where ρ is the density
contrast, G is the universal gravitational constant, r is the radius, and finally
xi (i = 1, . . . ,N) is the horizontal position coordinate.

The set of Eq. (1) consists of N nonlinear equations in function of the
three independent parameters k, x0 and z. The term Vi will be used, for
simplification, instead of the term Vz(xi) (i = 1, ...,N), in the rest of the
paper.

From Eq. (1), it can be easily observed that the sign of the parameter k
is similar and coincident to the sign of Vi (i = 1, ...,N).

Taking the absolute values of both sides of Eq. (1) we find

|Vi| = |k|(
(xi − x0)

2 + z2
)q (i = 1, ..., N). (2)

The simple manipulation of the Eq. (2) will give us

|Vi|−
1
q = |k|− 1

q x2i − 2x0|k|−
1
q xi + |k|− 1

q

(
x20 + z2

)
(i = 1, ...,N). (3)

And with help of the following symbolism:

A = |k|− 1
q , (4)

B = −2x0|k|−
1
q , (5)

C = |k|− 1
q

(
x20 + z2

)
. (6)

The Eq. (3) can be written as

|Vi|−
1
q = Ax2i +Bxi + C (i = 1, ..., N). (7)

The right hand side in Eq. (7), is a quadratic polynomial in function of
xi, the values of the coefficients A, B, and C, can be determined through

performing a quadratic curve regression between xi and yi = |Vi|−
1
q (i =

1, ..., N) using one of the familiar statistical programs as Microsoft Excel or
through solving the following set of simultaneously linear equations by the
well-known direct method of Gauss
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N∑
i=1

x4i

)
A+

(
N∑
i=1

x3i

)
B +

(
N∑
i=1

x2i

)
C =

N∑
i=1

x2i |Vi|−
1
q

(
N∑
i=1

x3i

)
A+

(
N∑
i=1

x2i

)
B +

(
N∑
i=1

xi

)
C =

N∑
i=1

xi|Vi|−
1
q

(
N∑
i=1

x2i

)
A+

(
N∑
i=1

xi

)
B +NC =

N∑
i=1

|Vi|−
1
q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (8)

After knowing the unique optimal values of A, B, and C, then the best-
estimate of the amplitude coefficient (k) can be easily obtained from Eq. (4)
as:

k =
1

Aq
, when Vi ≥ 0 (i = 1, ...,N), (9)

k = − 1

Aq
, when Vi ≤ 0 (i = 1, ...,N). (10)

Also, the best-estimate of the horizontal location (x0) of the buried body
can be found from Eq. (5) as:

x0 = − B

2A
. (11)

Finally, the best- estimate of the depth (z) from the surface to the center
of the buried structure (sphere or infinite horizontal rod) or the depth from
the surface to the top of the buried object (semi-infinite vertical rod) can
be reached from Eq. (6) as:

z =

√
|4AC −B2 |

2A
. (12)

It is useful to mention that there is no loss of generality in assuming the
source geometry of the gravity anomaly is a priori known. There are in
addition no imposed restrictions on the generality of the proposed interpre-
tation method.

Before explaining how we can solve this ambiguity and this inconve-
nience, we will define the statistical criterion of preference called the Root
Mean Square Error (RMSE; Collins, 2003), based on the minimal value, be-
tween the field gravity data anomaly and the computed gravity one, using
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the estimated values of z, x0 and k resulted from Eqs. (9–12) for a specific
value of the geometric shape factor q = 0.5, 1, and 1.5. The formula of this
statistical criterion is given as:

RMSE =

√√√√√ N∑
i=1

(
V O
i − V C

i

)2
N

, (13)

where V O
i and V C

i (i = 1, ..., N) are the observed and the computed gravity
values at the point xi (i = 1, ..., N), respectively.

In the case where the source geometry of the gravity field anomaly is
unknown, the following next procedure composed of three steps should be
followed:

First, the gravity field anomaly is interpreted by adapting and assuming
the source geometry as a semi-infinite vertical rod (q = 0.5), where Root
Mean Square Error RMSE V is computed using Eq. (13) with the esti-
mated values of z, x0 and k derived from Eqs. (9–12).

Second, the gravity field anomaly is re-interpreted by adapting the source
geometry as an infinite horizontal rod (q = 1), where the Root Mean Square
Error RMSE H is also computed using Eq. (13) with the estimated values
of z, x0 and k derived from Eqs. (9–12).

Third, the gravity field anomaly is re-interpreted by assuming the source
geometry as a sphere (q = 1.5), where the Root Mean Square ErrorRMSE S
is also computed using Eq. (13) with the estimated values of z, x0 and k
derived from Eqs. (9–12).

The lowest one of the three reached values of RMSE V , RMSE H and
RMSE S is selected as a convincible solution, which exactly indicates to the
suitable source geometry related to the responsible gravity field anomaly.

The square of correlation coefficient is another statistical criterion of pref-
erence that can be also applied to select the best optimum gravity solution.
It is defined through the following mathematical expression:

R2 =

(
N∑
i=1

(
V O
i − V̄ O

)
×

(
V C
i − V̄ C

))2

N∑
i=1

(
V O
i − V̄ O

)2 × N∑
i=1

(
V C
i − V̄ C

)2 , (14)

where V̄ O and V̄ C are the arithmetic means of V O
i and V C

i (i = 1, ...,N)
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respectively. We calculate R-squared for the three assumed types of geomet-
ric shapes of the buried structure, R2 V , R2 H and R2 S for a semi-infinite
vertical rod (q = 0.5), an infinite horizontal rod (q = 1), and a sphere
(q = 1.5) respectively, by using Eq. (14) with the estimated values of z, x0

and k resulted from Eqs. (9–12).
The highest one of the three reached values of R2 V , R2 H and R2 S

is selected as a convincible solution, which exactly and in directly indi-
cates to the suitable source geometry related to the responsible gravity field
anomaly.

3. Test on the synthetic data

A synthetic gravity anomaly Vz(xi) (i = 1, ...,N) due to a spherical structure
is generated from Eq. (1), by using the following values of model parameters:
geometric shape factor q = 1.5, depth from the surface to the center of the
buried spherical structure z = 35m, amplitude coefficient k = 1500mGalm3

and the horizontal location x0 = 5m.
The generated synthetic anomaly is perturbed and contaminated by a

Gaussian random noise of 25% maximum, using continuous normal distribu-
tion, where one additional gravity anomaly is generated (Fig. 2). This regen-
erated gravity anomaly is consequently interpreted by the proposed method.
Table 1 summarizes all acquired results concerning this anomaly, the geo-
physical parameters (z, k, x0) and the preference criterions (RMSE,R2),
and this for the three structures a priori assumed; a semi-infinite vertical
rod, an infinite horizontal rod and a sphere.

Table 1 shows that the lowest RMSE of the three reached values of
RMSE V , RMSE H and RMSE S or the highest one of the three reached
values of R2 V , R2 H and R2 S, and clearly indicates that the suitable
source geometry related to the responsible contaminated synthetic gravity
anomaly is a sphere.

The results documented and presented in Table 1 show without any
doubt that the estimated parameter values, derived by the proposed inter-
pretation method, are very close to the true assumed values of parameters.
This clearly proves the efficiency and the capability of the new proposed
interpretation method.
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Fig. 2. The effect of the sphere without the noise (solid line) and with 25% noise added
(dotted line). The model parameters are in the Table 1.

Table 1. Interpretation of a synthetic gravity anomaly with 25% maximum level of Gaus-
sian random noise.

Source geometric shape Model
parameters

True values
of model
parameters

Estimated values of
model parameters
with maximum 25%
random noise

Semi-infinite vertical
rod (q = 0.5)

z (m) 35 13.60

k (mGalm)
x0 (m)

1500
5

0.33
5.54

RMSE (mGal)
R2

–
–

0.0083
0.9102

Infinite horizontal rod
(q = 1)

z (m) 35 22.03

k (mGalm2)
x0 (m)

1500
5

20.25
4.97

RMSE (mGal)
R2

–
–

0.0037
0.9155

Sphere (q = 1.5) z (m) 35 34.83

k (mGalm3)
x0 (m)

1500
5

1503.20
4.76

RMSE (mGal)
R2

–
–

0.0027
0.9276
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4. Tests on the real data

Three field residual gravity anomalies over various geological structures are
interpreted by the new proposed method. The three field gravity anomalies
are interpreted according to the three different geological structures, e.g. a
sphere, an infinite horizontal rod, and a semi-infinite vertical rod. The re-
sulting model with the lowest reached value of RMSE or the highest reached
value of R2 is selected as the best and the suitable model for estimating the
parameters of the field residual gravity anomaly.

4.1. Chromites deposit residual field gravity anomaly, Cuba

Fig. 3 shows a normalized residual field gravity anomaly measured over a
chromites deposit in Camaguey province, Cuba (Robinson and Coruh, 1988).
The gravity anomaly has been interpreted by the proposed method assum-
ing a priori the source geometry is a semi-infinite vertical rod (q = 0.5),
an infinite horizontal rod (q = 1), and sphere (q = 1.5). Table 2 shows in
details all the obtained results related to this anomaly.

From Table 2, the lowest RMSE of the three reached values ofRMSE V ,
RMSE H and RMSE S or the highest one of the three reached values of

Fig. 3. Normalized residual gravity field anomaly over a chromites deposit, Camaguey
province, Cuba (dotted line). The evaluated curve by the proposed method is presented
for an infinite horizontal rod model (solid line). The model parameters are in the Table 2.
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Table 2. Interpretation of the Chromites field residual gravity anomaly, Cuba.

Model Semi-infinite Infinite Sphere
parameters vertical rod horizontal rod

z (m) 7.94 17.55 26.50

k 7.24 (mGalm) 318.55 (mGalm2) 17256.00 (mGalm3)

x0 (m) 0.22 –0.44 –0.62

RMSE (mGal) 0.1264 0.0170 0.0351

R2 0.9526 0.9969 0.9923

R2 V , R2 H and R2 S has been obtained for the infinite horizontal rod.
Results of RMSE and R2 mean that the field residual gravity anomaly is
must to be preferably modeled as an infinite horizontal rod.

The depth obtained in this case (z = 17.55m) is found to be in a good
agreement with that obtained from drill-hole information (z = 21m). The
computed gravity anomaly has been drawn according to these estimated
values of infinite horizontal rod model parameters as shown in Fig. 3. The
comparison between field and computed anomalies clearly indicates the close
agreement between them, which attests the capability and the validity of
the proposed method.

4.2. Karrbo residual field gravity anomaly, Sweden

Fig. 4 shows a field residual gravity anomaly of a profile 25.6m length
measured over the two-dimensional pyrrhotite ore, Karrbo, Vastmanland,
Sweden (Shaw and Agarwal, 1990). The field gravity anomaly has been also
interpreted by the proposed method for the three different geological struc-
tures a priori assumed. Table 3 shows the complete obtained results related
to this interpreted anomaly.

From Table 3, the lowest RMSE of the three reached values ofRMSE V ,
RMSE H and RMSE S or the highest one of the three reached values of
R2 V , R2 H and R2 S has been obtained for the infinite horizontal rod,
meaning that, the field residual gravity anomaly is preferably to be mod-
eled as an infinite horizontal rod.

The depth in this case (z = 4.69m) is found to be in good agreement
with the depth reported by Tlas et al. (2005) (z = 4.82m), Asfahani and
Tlas (2015) (z = 4.7m), Shaw and Agarwal (1990) (z = 5.8m), and El-
Araby (2000) (z = 5.23m). The computed gravity anomaly has been drawn
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Fig. 4. Residual gravity field anomaly over the two-dimensional pyrrhotite ore, Karrbo,
Vastmanland, Sweden (dotted line). The evaluated curve by the proposed method is pre-
sented for an infinite horizontal rod model (solid line). The model parameters are in the
Table 3.

Table 3. Interpretation of the Karrbo field residual gravity anomaly, Sweden.

Model Semi-infinite Infinite Sphere
parameters vertical rod horizontal rod

z (m) 3.04 4.69 7.50

k 1.67 (mGalm) 22.45 (mGalm2) 365.95 (mGalm3)

x0 (m) 0.27 0.21 0.19

RMSE (mGal) 0.2381 0.0063 0.0530

R2 0.9971 0.9996 0.9869

according to these estimated values of infinite horizontal rod model pa-
rameters as shown in Fig. 4. The comparison between field and computed
anomalies clearly indicates the close agreement between them, which attests
the capability and the validity of the suggested method.

4.3. Dehloran residual field gravity anomaly, Iran

Fig. 5 shows a field residual gravity anomaly measured over an area located
in West of Iran in the Zagros tectonic zone, Iran (Abedi et al., 2010). The
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field gravity anomaly has been also interpreted by the proposed method; the
obtained results for this anomaly are completely summarized in Table 4.

From Table 4, the lowest one of the three reached values of RMSE V ,
RMSE H and RMSE S or the highest one of the three reached values
of R2 V , R2 H and R2 S has been obtained for the infinite horizontal rod,
meaning that, the field residual gravity anomaly is preferably to be modeled
as an infinite horizontal rod.

The depth obtained in this case (z = 24.59m) is found to be in good
agreement with that reported by (Abedi et al., 2010) by using three differ-
ent interpretation methods, the normalized method (z = 23.73m), the least-

Fig. 5. Residual gravity field anomaly over an area located in West of Iran in the Zagros
tectonic zone, Iran (dotted line). The evaluated curve by the proposed method is pre-
sented for an infinite horizontal rod model (solid line). The model parameters are in the
Table 4.

Table 4. Interpretation of the Dehloran field residual gravity anomaly, Iran.

Model Semi-infinite Infinite Sphere
parameters vertical rod horizontal rod

z (m) 12.26 24.59 32.74

k –6.52 (mGalm) –291.46 (mGalm2) –16641.00 (mGalm3)

x0 (m) 27.42 27.62 27.69

RMSE (mGal) 0.0171 0.0129 0.0158

R2 0.9785 0.9892 0.9834
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squares method (z = 23.31m), the neural network method (z = 22.8m) and
also with that obtained from drill-hole information (z = 23m).

The computed gravity anomaly has been drawn according to these esti-
mated values of infinite horizontal rod model parameters as shown in Fig. 5.
The comparison between field and computed anomalies clearly indicates the
close agreement between them, which attests the capability and the validity
of the suggested method.

5. Conclusion

A new simple and very easy method is proposed herein for the interpreta-
tion of residual gravity anomalies due to different simple geometric-shaped
models such as a semi-infinite vertical rod, an infinite horizontal rod and a
sphere. The proposed interpretative method is mainly based on quadratic
curve fitting to best-estimate the model parameters values, e.g. the depth
to the top or to the center of the buried structure, the amplitude coefficient
and the horizontal location from a residual gravity anomaly profile. The
method has been firstly tested on synthetic data set corrupted and contam-
inated by a white Gaussian random noise maximum level of 25% in order
to demonstrate its reliability and its capability. The results acquired show
clearly that the estimated parameter values derived by the proposed method
are very close to the assumed true values of parameters.

The validity and the applicability of this new method are also demon-
strated by applying it to three real field gravity anomalies from Cuba, Swe-
den and Iran. A comparable and acceptable agreement is shown between
the results derived by the method and those obtained by other interpreta-
tion methods.

Moreover, the depth obtained by such a proposed method is found to be
in high accordance with that obtained from the real field data information.

The interpretation method can be easily put in MATLAB code or in
Excel sheet. Therefore, the new proposed methodology of interpretation is
highly recommended for routine analysis of gravity anomalies in an attempt
to determine the best-estimate values of parameters related to spheres, semi-
infinite vertical rods and infinite horizontal rods-like structures.
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