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Juraj JANÁK1, Petr VAŃIČEK2, Ismael FOROUGHI2, Robert KINGDON2,
Michael B. SHENG2, Marcelo C. SANTOS2

1 Department of Theoretical Geodesy, Slovak University of Technology,
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Abstract: The aim of this paper is to show a present state-of-the-art precise gravimetric

geoid determination using the UNB Stokes-Helmert’s technique in a simple schematic

way. A detailed description of a practical application of this technique in the Auvergne

test area is also provided. In this paper, we discuss the most problematic parts of the

solution: correct application of topographic and atmospheric effects including the lateral

topographical density variations, downward continuation of gravity anomalies from the

Earth surface to the geoid, and the optimal incorporation of the global gravity field into

the final geoid model. The final model is tested on 75 GNSS/levelling points supplied

with normal Molodenskij heights, which for this investigation are transformed to rigorous

orthometric heights. The standard deviation of the computed geoid model is 3.3 cm

without applying any artificial improvement which is the same as that of the most accurate

quasigeoid.

Key words: gravity field, geoid, Stokes-Helmert’s method, downward continuation, to-
pographical density variation, rigorous orthometric heights

1. Introduction

In 1849 G. G. Stokes introduced his method of geoid determination from
gravity measurements, and his analytical solution for a spherical boundary
has become known as Stokes’s integral (Stokes, 1849). Stokes made the as-
sumptions that we’d have measured gravity on the geoid and that there are
no masses above the geoid. Neither assumption is satisfied in practice and
we have to deal with them in one way or another. One reasonable idea to
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overcome the problem stemming from the later assumption came from F. R.
Helmert (Helmert, 1884) who suggested to condense all topographic masses
into a 2D layer located on or below the geoid, to mathematically avoid the
topographic mass issue. Helmert’s approach applied to the geoid (known as
the second Helmert’s condensation technique) combined with the original
Stokes’s idea has become known in literature as the Stokes-Helmert (SH)
method. During recent decades, the SH method has been developed and
coded by the University of New Brunswick (UNB) Geodesy Group and is
documented in many publications, e.g., (Vańıček and Martinec, 1994; Ell-
mann and Vańıček, 2006).

Similarly, the transformation of gravity observed on and above the Earth
surface down to the geoid, known as downward continuation, has been stud-
ied by the UNB group. They have opted for using the physically rigorous
approach formulated by Poisson (MacMillan, 1930) and the results of their
studies of Poisson’s method for the downward continuation of harmonic
functions are documented in several publications, e.g., (Vańıček et al., 1996;
Sun and Vańıček, 1998; Kingdon and Vańıček, 2010). As a by-product
of their investigation they discovered that in order to downward continue
a gravity anomaly, the anomaly must be of a “solid” type (Vańıček et al.,
2004), which rules out the use of free-air as well as planar Bouguer gravity
anomalies.

To reach a one-centimeter accuracy geoid model at a regional scale is
a very challenging task, especially in a mountainous region. Ever since
Duquenne (2007) produced a good standard database to test the meth-
ods of geoid or quasigeoid computation, several authors, see, e.g., (̊Agren
et al., 2009, Yildiz et al., 2012) have computed regional quasigeoid mod-
els in the Auvergne region. The quasigeoid models, presented in Ågren
et al. (2009), were tested at 75 GNSS/levelling points and the standard
deviation of residuals (after one-parameter fitting) were all in the vicin-
ity of 3.7 cm. It was reported in the same study that the Least Square
Modification of Stokes method (LSMS or KTH approach (Sjöberg, 2003))
provides the best quasigeoid model among other methods (STD of 3.3 cm).
In fact, this method produces geoid model, which is converted to a quasi-
geoid. Herein, we present a regional geoid model computed using the UNB
SH method, providing a detailed description, graphical presentation of in-
termediate computations, testing of the final model (without any fitting),
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comparison with other selected models and discussion of theoretical and
practical problems and advantages of the SH method.

The second section is dedicated to the theory behind the SH method,
mentioning the basic ideas in a schematic way with relevant references for
readers who wish to learn the detailed theoretical arguments. Section 3
introduces the Auvergne region for which our geoid model has been com-
puted and tested; it also gives some statistical information about the input
data. Section 4 is focused on the compilation of spherical Bouguer gravity
anomalies, also known as NT (No-Topography) anomalies, and on Helmert’s
gravity anomalies on the topography. In the next section, the downward
continuation of Helmert’s anomalies is presented together with the rest of
the intermediate results of the geoid solution. Section 6 describes the as-
sessment of our geoid model vis-à-vis the 75 GNSS/levelling points supplied
by IGN. The last section is devoted to a brief discussion and conclusions.

2. Stokes-Helmert method, present state and references

The theory behind the UNB SH method has been described in many publica-
tions. Therefore, instead of repeating the mathematical formulae, which can
be found in, e.g., (Vańıček and Sjöberg, 1991; Vańıček and Martinec, 1994;
Tenzer et al., 2003; Ellmann and Vańıček, 2006; Vańıček et al., 2013),
we have chosen to show the flow of the computation in elementary steps
supplemented by brief descriptions.

Δg[rt(Ω).Ω] → ΔgH [rt(Ω).Ω] . (1)

In the first step, the observed free-air gravity anomalies are converted to
Helmert gravity anomalies, one of the couple of anomalies known to be
“solid” and thus capable of being continued downwards to the geoid (Vańıček
et al., 2004). This conversion consists of adding the direct topographical and
atmospheric effects (DTE) and (DAE), the secondary indirect topographical
and atmospheric effects (SITE) and (SIAE) and, if the topographical den-
sity model is available, also the direct topographical density effect (DDE).
All these effects, except DDE, are evaluated as sums of the near zone and far
zone contributions and are computed at the locations of the observed points
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on the surface of the Earth. Beside these standard corrections if the avail-
able topographical heights are of the orthometric kind, a small correction
to normal gravity, called the geoid-quasigeoid correction, is also applied. In
Eq. (1) and throughought this paper, Ω stands for geocentric direction, i.e.,
(ϕ, λ), the geocentric latitude and longitude; the subscripts t and g denote
a radius-vector ending either at the topography or at the geoid; subscripts
beside residual quantities show the degre and order of the reference field and
the angular radius of the integration cap; and the meaning of the supescript
His that the superscripted quantity belongs to Helmert’s space.

We refer to this step also as the transformation from the “Real space”
to “Helmert’s space”. More details about this step can be found e.g.,
in (Martinec and Vańıček, 1994a; Martinec, 1998; Vańıček et al., 1999;
Novák, 2000). Concerning lateral topographical density effect studies, see
(Martinec, 1993; Martinec et al., 1995; Huang et al., 2001).

ΔgH [rt(Ω).Ω] → ΔgH [rg(Ω).Ω] . (2)

The second step consists only of the downward continuation of Helmert’s
gravity anomaly from the Earth’s surface to the geoid. The UNB Geodesy
Group had decided to use the most rigorous approach to downward continu-
ation, i.e., that due to Poisson. This approach requires the gravity anomaly
on the Earth surface to be “solid” and harmonic within the topography,
which is indeed the case with Helmert’s anomaly. This step is often con-
sidered to be somewhat problematic due to the numerical instability of the
inverse Poisson integral. After a thorough theoretical and numerical inves-
tigation, e.g., (Vańıček et al., 1996; Sun and Vańıček, 1998; Huang, 2002;
Huang et al., 2003; Kingdon and Vańıček, 2010), it was decided to use the
Jacobi iterative algorithm for the solution of the inverse Poisson integral.

ΔgH [rt(Ω).Ω] → δΔgH [rg(Ω).Ω] . (3)

This step consists of subtraction of the reference gravity field, (in terms of
reference Helmert’s gravity anomalies) of selected degree and order L result-
ing in residual Helmert’s gravity anomalies on the geoid. Residual gravity
anomalies refer to the reference spheroid of degree and order L. Before this
operation is performed, the earth gravity model (satellite only EGM) used
for the generation of reference gravity anomalies has to be “Helmertized”,
i.e., transformed to the Helmert space. For the reference, see, e.g., (Vańıček
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and Sjöberg, 1991; Vańıček et al., 1995; Martinec and Vańıček, 1996). This
transformation requires the knowledge of a global digital elevation model
(DEM) in terms of spherical harmonic coefficients. Technically, a part of
this step is also the application of ellipsoidal corrections correcting the ef-
fect of spherical approximation of the boundary condition. It consists of
two terms corresponding to the terms of the boundary condition, which are
called the ellipsoidal correction to the gravity disturbance, and the ellip-
soidal correction for the spherical approximation (see Vańıček et al., 1999).

δΔgH [rg(Ω).Ω] → δNH
L.ψ0(Ω) . (4)

In this step, we compute the residual Helmert cogeoid on a selected regular
grid using Stokes’s integration over the spherical cap of radius ψ0, and inte-
gration kernel modified to degree L according to the idea by Molodenskij,
see (Molodenskij et al., 1960). We note that the spatial Stokes convolution
of δΔgH [γg(Ω),Ω] with the modified Stokes kernel is done using a UNB
technique that is faster than Fast Fourier Transform methods (see Huang et
al., 2000). The modification is selected so as to minimize the contribution
from the far-zone, and by doing this to minimize the contribution from the
EGM which is known to approximate the reality only in an asymptotic way.
The result of this step can be called the near-zone (NZ) residual Helmert
cogeoid. For details, see Vańıček and Featherstone (1998) and Novák et al.
(2001).

δNH
L.ψ0

(Ω) → δNH . (5)

Here, the far-zone (FZ) contribution δNH
Lψ0

(Ω) to the residual Helmert
cogeoid, also called the “truncation error” by Molodenskij, is evaluated in
a spectral way using the EGM in the Helmert space, to the appropriate
degree higher than that of the reference field (L), for the chosen radius, ψ0

and added to the NZ (spherical cap of radius ψ0) contribution δNH
Lψ0

(Ω).
Due to the modification of the Stokes kernel, see the previous step, the
truncation error term is relatively small. The result of this step is the total
residual Helmert cogeoid. More details are found in (Molodenskij et al.,
1960; Vańıček and Featherstone, 1998).

δNH(Ω) → NH(Ω) . (6)
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The last step conducted in the Helmert space is the transformation of the
total residual cogeoid to the complete Helmert cogeoid. This is done simply
by adding to the residual cogeoid the “Helmertized” reference spheroid of
degree L.

δNH(Ω) → N(Ω) . (7)

The final step of the computation is the transformation of the Helmert co-
geoid NH(Ω) from Helmert space back to the real space. This is done by
adding to the Helmert cogeoid the primary indirect topographical and at-
mospheric effects (PITE) and (PIAE) and, if the variations of topographical
density are known, the primary indirect topographical density effect (PIDE).
For details see Martinec and Vańıček (1994b) and Martinec et al. (1996).
As a part of this step, to preserve the physical correctness of the solution,
a small correction due to the shift of the centre of mass of the Earth during
the Helmert condensation needs to be applied. This correction is referred
to as the Hörmander correction and it reaches up to a few centimetres. For
details see Hörmander (1976), Martinec (1998), and Vańıček et al. (2013).

3. Input data sets

The overall quality of the geoid model depends directly on the quality of the
input data. The geoid model is also affected by other errors coming from
various approximations, inconsistencies when merging several data sources,
numerical errors due to discretization, interpolation and integration or errors
caused by unsatisfied assumptions. The aim of this section is to list the input
data used in our geoid computation and provide the original reference and
the accuracy, if available.

The main input to our geoid model is the free-air gravity anomaly data set
based on the Burreau Gravimétrique International (BGI) gravity database
originally supplied by the Bureau de Recherches Géologiques et Miničres
and provided to us by the Institut Géographique National (IGN) (Duquenne,
2007).

It contains 244,009 values of the free-air gravity anomalies in the IGSN71
gravity reference system, with horizontal positions (ellipsoidal latitude and
longitude) compatible with the ETRS89 terrestrial reference system and
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the heights of the normal variety (Duquenne, 2007). It covers the area
43◦ ≤ ϕ ≤ 49◦,−1◦ ≤ λ ≤ 7◦, see Fig. 1, and the standard deviation of these
data, according to Duquenne (2007) ranges from 0.25 to 0.75 mGal. This
error can increase to 1 to 2 mGal after computation of gravity anomalies,
mainly due to inaccuracy in a horizontal position of the gravity points. Most
of the gravity values were measured before 1971 and transformed to IGSN71
from older gravity systems. The density of the gravity data coverage varies
significantly in the south-eastern part of the area, see Fig. 1. In some areas,
even in the central part, the coverage is not sufficient for interpolation to
a dense grid. The map of the free-air gravity anomalies is shown in Fig. 2,
and the corresponding basic statistical values are listed in Table 1.

We decided to check this gravity database for outliers and duplicate
points. 118 couples of duplicate points and 2 outliers were detected and
eliminated.

Fig. 1. Distribution of the free-air gravity anomalies.
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Fig. 2. Free-air gravity anomalies directly gridded from the original scattered data based
on (Duquenne, 2007) database.

Table 1. Statistical values of the observed (scattered) free-air gravity anomalies and
normal heights at the 244009 measured points of the data set (Duquenne, 2007).

Quantity Min Max Mean STD

Δg (mGal) –127.47 177.82 3.06 20.70

Hn (m) 0.00 2677.27 288.24 234.14

Another type of data set are DEMs. For our computation, we used three
DEMs: the SRTM3 version 4 (Werner, 2001; Rodriguez et al., 2005; Reuter
et al., 2007), the ACE2 which is based on a combination of the SRTM and
Satellite Radar Altimetry data (Berry et al., 2010) and a global DEM in the
form of spherical harmonic coefficients of the JGP95 model (Lemoine et al.,
1998). The SRTM3 model was used for representing a detailed topography
on a grid of 3′′ × 3′′ spacing. It was used mainly for interpolation of the
free-air gravity anomalies to get free-air anomalies on a regular grid with
1′×1′ resolution and for the computation of the direct topographical effect,
as explained in section 4. This is a nearly global high resolution DEM with
an absolute vertical error (a linear error with respect to true elevation at
90% probability) of less than 16 m (Hensley et al., 2000; Farr et al., 2007).
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Several studies show that this error is actually smaller – about 9 meters,
e.g., Denker (2004), Rodriguez et al. (2005). Some known problems such as
the data void due to shadowing and smooth surfaces, or weak penetration of
the vegetation canopies were addressed to some extent in version 4 (Reuter
et al., 2007).

The ACE2 model is applied in those computations where the mean ele-
vations on a grid of 30′′ × 30′′, 5′ × 5′ or 1◦ × 1◦ resolution are needed, see
sections 4 and 5. For accuracy assessment of ACE2 model, see (Berry et al.,
2010). Finally, the JGP95 model is needed in the “Helmerization” of the
reference field, see section 5. A comparison with the GLOBE global DEM
and accuracy assessment of this model can be found in, e.g., Berry (1999).
The topography on a grid of 30′′ × 30′′ based on the ACE2 DEM over the
area covered by terrestrial gravity data is depicted in Fig. 3.

The next input needed in our computational scheme is an Earth gravity
model (EGM). The satellite-only EGM GO CONS GCF 2 DIR R5 is used
for our reference field computation, see section 5. Figures of the reference
gravity anomalies and the associated reference spheroid are presented in
section 5.

Fig. 3. Topography of the area covered by terrestrial gravity data with the resolution of
30′′ × 30′′ based on the ACE2 digital elevation model.
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The last input used in the UNB SH-scheme is a digital topographical
density model (DDM). The largest contribution comes from lateral inhomo-
geneity and this was the one we concentrated on here. We prepared our own
lateral DDM based on an analogous geological map of France by Bodelle et
al. (1980), as was also investigated by Foroughi et al. (2015b), that despite
the low resolution of the map improves the accuracy of the gravimetric geoid
in Auvergne. The DDM affects the direct topographic effect, and the pri-
mary and secondary indirect topographic effects. However, the influence
on the secondary indirect topographic effect is usually negligible and was
therefore not evaluated. The two remaining effects, called the direct density
effect (DDE) and primary indirect density effect (PIDE) are shown in sub-
section 5.2. Details about the preparation and testing of the DDE for the
Auvergne and surrounding area can be found in Foroughi et al. (2015b).

4. Interpolation of free-air gravity anomalies on topography

The observed free-air gravity anomalies are scattered irregularly on the
Earth surface. Most geoid computation algorithms, including ours, require
an input of free-air gravity anomalies on a regular grid. Therefore, an
interpolation of free-air gravity anomalies, which is not a trivial task, has
to be performed. A procedure published by Janák and Vańıček (2005) was
adopted. The scattered free-air gravity anomalies were transformed first
into refined spherical Bouguer gravity anomalies, which are locally smooth
enough to make interpolation easier. Interpolation of these anomalies into
a regular geographical 1′× 1′ grid, see Fig. 4, was performed by the Kriging
method with a linear variogram assuming an anisotropy factor due to the
convergence of meridians. The basic statistical values of both scattered
and interpolated refined spherical Bouguer gravity anomalies are shown in
Table 2.

Free-air gravity anomalies on the same geographical grid of 1′ × 1′ (see
Fig. 5), were obtained by adding back the topographical mass effect with
the elevation of the grid nodes and the shape of the surrounding terrain
were taken from the SRTM3 DEM. Basic statistics are shown in the last
row of Table 2.
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Fig. 4. Refined spherical Bouguer gravity anomalies on the Earth surface interpolated to
1′ × 1′ geographical grid.

Table 2. Statistics of the 243889 scattered and 1′ × 1′ interpolated refined spherical
Bouguer gravity anomalies and free-air gravity anomalies.

Quantity Min Max Mean STD

Δgscatt (mGal) –127.47 177.82 3.06 20.70

ΔgRB scatt (mGal) –193.66 28.44 –56.74 19.95

ΔgRB grid (mGal) –192.87 28.50 –59.98 28.50

Δggrid (mGal) –111.36 292.33 8.82 29.03

The process of interpolation of free-air gravity anomalies can be written schematically as
Δg[rt(Ω),Ω] → ΔgRB[rt(Ω),Ω] → (ΔgEB)y → (Δg)y.

5. Computation of geoid model

In this section, we present the intermediate and final results of the SH geoid
computation process following the computational steps outlined in Section
2. Foroughi et al. (2017a) suggested a numerical technique to arrive at the
optimal degree/order of reference field (this equals also the modification
of Stokes’s integral) and Stokes’s integration radius to compute cogeoid
heights. They suggested to vary the degree of reference filed and Stokes’s
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Fig. 5. Free-air gravity anomalies on a regular 1′ × 1′ geographical grid obtained from
interpolated refined spherical Bouguer gravity anomalies.

integration cap size and evaluate the final geoid with GNSS/Levelling points.
In case gravity data in surrounding areas are needed when using larger
integration cap sizes, they can be filled with EGM-generated grid points
(Foroughi et al., 2015a). According to their investigation, the degree/order
of 160 for the reference field and integration radius of 45’ gives the best
results in the sense of fitting the geoidal heights with GNSS/Levelling points
in the area of Auvergne. We adopted these parameters for our study but it
should be stated that these parameters can differ for different areas.

5.1 Geoid model under the assumption of standard topographic
density

In order to transfer the free-air gravity anomalies to Helmert space, and
thus to obtain the Helmert gravity anomalies, the effects DTE and SITE
and DAE (see step 1 in Section 2) have to be applied to free-air gravity
anomalies. The secondary indirect atmospheric effect, the SIAE, can safely
be neglected, as its magnitude is exceedingly small. The other three effects
are shown in Figs 6 and 7 and their statistical values are presented in Table 3.
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Fig. 6. Direct topographical effect (a) and direct atmospheric effect (b) used for transfor-
mation of the free-air gravity anomalies to the Helmert space.

Table 3. Statistics of Helmertization terms (mGal).

Quantity Min Max Mean STD

DTE –103.61 110.41 –1.01 7.57

SITE –2.23 0.00 –0.03 0.10

DAE –0.84 –0.71 –0.82 0.02

Helmert’s gravity anomalies multiplied by geocentric radius r can be
continued down from the Earth surface to the geoid as they are a harmonic
function. For this downward continuation, we used the Jacobi iterative
procedure complemented by the determination of the maximum necessary
number of iterations, as discussed by Kingdon and Vańıček (2010) and de-
scribed in step #2 of section 2 above. Fig. 8a displays the Helmert grav-
ity anomalies on the Earth surface and Fig. 8b shows the Helmert gravity
anomalies on the geoid after applying the downward continuation.

The reference gravity anomalies in Helmert’s space were computed by
means of the DIR R5 up to degree/order 160 and the global digital terrain
model JGP95 using the linear and quadratic coefficients, see Fig. 9a. Sub-
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Fig. 7. Secondary indirect topographic effect used for the transformation of the free-air
gravity anomalies to the Helmert space.

Fig. 8. Helmert’s gravity anomalies on the Earth surface (a) and on the geoid (b).
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Table 4. Statistics of Helmert’s gravity anomalies on the earth surface and on the geoid
(mGal).

Quantity Min Max Mean STD

Helmert gravity anomalies on surface –86.82 155.08 9.84 27.36

Helmert gravity anomalies on geoid –97.92 208.50 10.52 30.17

tracting the reference Helmert gravity anomalies from the Helmert gravity
anomalies on the geoid, as obtained from terrestrial gravity measurements,
we get the residual Helmert gravity anomalies, as demanded by step #3
in section 2 above, see Fig. 9b. These anomalies are further corrected by
adding two ellipsoidal corrections due to spherical approximation of the
boundary condition, see Figs 10a and 10b.

Fig. 9. Reference Helmert’s gravity anomalies computed using DIR-R5 up to degree/order
160 (a) and residual Helmert’s gravity anomalies (b).

Table 5. Statistics of reference Helmert’s gravity anomalies and residual Helmert’s gravity
anomalies (mGal).

Quantity Min Max Mean STD

Reference Helmert gravity anomaly –28.04 90.63 11.31 22.35

Residual Helmert gravity anomaly –161.69 138.47 –0.75 23.71
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Fig. 10. Ellipsoidal corrections: correction to gravity disturbance (a) and correction for
spherical approximation (b).

Table 6. Statistics of ellipsoidal corrections (mGal).

Quantity Min Max Mean STD

Ellipsoidal correction to gravity –0.239 0.235 0.019 0.059
disturbance

Ellipsoidal correction to spherical 0.014 0.034 0.023 0.005
approximation

Applying the Stokes integration to the residual Helmert gravity anoma-
lies, the residual NZ co-geoid was computed at the nodal points of 1′×1′ grid
using modified Stokes’s convolution integral (integration cap ψ = 45′, modi-
fication degree of 160) in 2◦×3◦ central area, 45◦ < ϕ < 47◦, 1.5◦ < λ < 4.5◦,
in which all the GNSS/Levelling points are located. For this integration, the
UNB “Faster than the FFT” technique was employed as already mentioned
in step #4 in section 2 above.

The FZ contribution, a.k.a., the truncation correction (or truncation er-
ror with the opposite sign), was then evaluated from DIR-R5 using spherical
harmonic coefficients (transformed into the Helmert space) of degree/order
161 up to full degree/order (300). This contribution is shown in Fig. 12a.
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The low frequency part of the co-geoid, the reference spheroid, as well as
the truncation correction must be added to residual co-geoid values to get
the co-geoid (cf., step #6 in section 2 above), i.e., the geoid in Helmert’s
space, which contains all harmonic frequencies. The reference spheroid was
computed using the DIR-R5 and JGP95 models up to the same degree/order
160 as for the reference Helmert gravity anomaly. Fig. 11a shows the un-
dulation of the reference spheroid and Fig. 11b the residual co-geoid in the
central area of the Auvergne region. The statistics are presented in Table 7.

Fig. 11. Reference Spheroid computed using DIR-R5 model and up to degree/order 160
in Helmert’s space (a) and residual co-geoid (b).

Transformation of the co-geoid in a Helmert space to the geoid in a
real space needs to be done by applying the primary indirect topographical
and atmospheric effects, the PITE and PIAE (step #7 in section 2 above),
see Fig. 13. These effects were computed using the ACE2 digital terrain
model. At the end of the computation process a Hörmander correction which
corrects for the small shift of the centre of the Earth mass during the Helmert
condensation needs to be computed (step #7 in section 2 above), see Fig. 12b
and Table 7. The residual co-geoid, reference spheroid, truncation correction
and all other correction terms were computed at the nodal points of 1′ × 1′

regular geographical grid.
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Fig. 12. Far-zone contribution to residual NZ co-geoid, a.k.a., truncation correction (a)
and Hörmander correction (b).

Fig. 13. Primary indirect topographical effect (a) and primary indirect atmospheric effect
(b).

Final geoid model was obtained by the summation of the co-geoid, the
two primary indirect effects PITE and PIAE and the Hörmander correction.
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The geoid height in this area varies between 46.62m and 52.53m, see Table 7.
Fig. 14 shows the geoid height variation in the computation area.

Table 7. Statistics of final geoid computation components (m).

Quantity Min Max Mean STD

Reference Spheroid 46.371 52.587 49.560 1.570

Residual Co-geoid –1.063 1.366 0.00 0.479

Truncation correction –0.075 0.058 -0.004 0.032

PITE –0.159 –0.025 –0.044 0.020

PIAE –0.007 –0.006 –0.006 0.000

Hörmander correction 0.003 0.004 0.003 0.000

Geoid 46.595 52.480 49.512 1.487

Fig. 14. Geoid model in the Auvergne area assuming the standard density of topographic
masses 2670 kgm−3.

5.2 The effect of lateral topographical density variations on the
geoid

Lateral topographical density variations in this area were estimated from
surface geology on a 5′ × 5′ grid from publicly available geological map
introduced in section 3. The effect of these approximate density variations
on the geoid were computed in two terms of direct density effect DDE (cf.,
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step #1 in section 2 above) and primary indirect density effect PIDE (cf.,
step #7 in section 2 above). The total effect of lateral topographical density
varies between –5.8 and 2.4 cm. These corrections were applied to the final
geoid model in Auvergne area; for more details see (Foroughi et al., 2015b).
Fig. 15 shows the effects of lateral density variation on the geoid in the
Auvergne area. Due to the lack of accurate density information the lateral
topographical density model was created on a relatively coarse grid and thus
the contribution to the geoid has been evaluated only approximately. The
statistics of both components and the geoid model assuming the density
variation is shown in Table 8.

Fig. 15. Effects of lateral topographical density variations in Auvergne area: direct topo-
graphical density effect (a) and primary indirect topographical density effect (b).

Table 8. Statistics of the direct and primary indirect density effects on the geoid and
statistics of the geoid model assuming the lateral topographical density variation (m).

Quantity Min Max Mean STD

DDE –0.059 0.030 0.000 0.016

PIDE –0.020 0.006 –0.007 0.007

Geoid 46.620 52.492 49.528 1.491
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6. Testing and comparison

The 75 points on which both the GNSS-determined geodetic heights and
levelled heights, expressed as “normal heights”, are located in the area of
Auvergne, (Duquenne, 2007). These points have been used for the assess-
ment of our geoid model. First, the rigorous orthometric heights were cal-
culated from the normal Molodensky heights based on the theory published
by Santos et al. (2006). The implementation of this transformation is de-
scribed byForoughi et al. (2017b). The locations of these control points over
the test area are shown in Fig. 16. The statistics of the differences between
the two heights, rigorous orthometric minus normal, is shown in Table 9.

After obtaining the set of the rigorous orthometric heights, the geoid
heights were evaluated at the location of the 75 control points, and the differ-

Fig. 16. Topography over the Auvergne area and locations of control GNSS/levelling
points.

Table 9. Statistics of differences between the rigorous orthometric and normal heights
(mm).

Quantity Min Max Mean STD Range

H0 −Hn 1.6 70.4 22.3 14.7 68.8
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ences between the gravimetric geoid heights and the differences of geodetic
and rigorous orthometric heights at these points were computed. These dif-
ferences are characterized by the standard deviation of 3.4cm and the mean
difference of 12.4 cm, see Table 10. After the effects of lateral topograph-
ical density variation were added to the final geoid model, the comparison
showed 1.4 mm improvement in the standard deviation and 7.3 mm change
in the mean difference, see Table 10. Fig. 17 shows the differences between
the final geoid model and the GNSS/levelling control points.

Table 10. Statistics of differences between the gravimetric geoid heights and GNSS/
levelling geoidal heights computed at 75 control points (m).

Quantity Min Max Mean STD Range

Geoid 0.028 0.207 0.124 0.034 0.178

Geoid (density effect included) 0.024 0.222 0.133 0.033 0.197

Fig. 17. Map of differences between the gravimetric geoid model that includes the lateral
topographical density effect and GNSS/levelling geoid heights at control points.
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The same evaluation was done in Ågren et al. (2009) for their quasi-
geoid solution using five different methods and normal heights of the same
75 control points – cf., Ågren et al. (2009). According to their results the
KTH method Sjöberg (2003) gives the smallest standard deviation (3.3 cm)
when one-parameter corrector plane is applied. This confirms our results
presented here as the KTH method is basically a simplified geoid deter-
mination (using Stokes’s technique) which is then converted to quasigeoid
for comparison with normal heights. However, the comparison of mean of
differences is not possible since the quasigeoid results are always presented
after applying a corrector surface.

More detailed statistical information about the differences can be seen
from the histograms plotted in Fig. 18.

Fig. 18. Histograms of differences between the gravimetric geoid heights (standard density
– left; lateral topographical density variation included – right) and GNSS/levelling geoid
heights at 75 control points.

From the histograms shown in Fig. 18 it can be seen that there has been
an improvement in the distribution of the differences in spite of very poor
resolution of the digital density model that was used for the computation.
The histogram on the right appears to be more normally distributed around
the mean value.
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7. Discussion and conclusions

As stated in the abstract, the intention of this paper is to show how the
current version of the Stokes-Helmert geoid determination technique works
with real data at least as well as the quasigeoid determination techniques
do. The S-H’s technique, as a result of several decades of investigation
and refinements performed mainly at the University of New Brunswick was
already tested on an Australian synthetic gravity field constructed at the
Curtin University (Baran et al., 2006). The test was not very successful be-
cause the synthetic field lacked the required accuracy and self-consistency.
However, it confirmed the hypothesis that the S-H theory is accurate to
about 2.5 cm (standard deviation) and to a range of 20 cm when used with
errorless data (Vańıček et al., 2013) Assuming that the errors in the SH
theory (and in the code) are independent of the errors in input data, we
would deduce that the effect of the data errors (observed gravity, topograph-
ical heights, topographical density, levelled heights and GNSS determined
geodetic heights) combined is about 2.6 cm which is less than one should
expect.

Our study in the Auvergne test region revealed, without employing any
beautification technique such as corrector surfaces, and with a very inac-
curate evaluation of the topographical density contribution, that the gravi-
metric geoid can certainly be determined to the same accuracy as, if not a
better accuracy than, quasigeoid models in the same area, (see, e.g., Yildiz
et al., 2012). This also demonstrates the successful application of Helmert’s
second condensation technique (see, e.g., Martinec, 1998), which generates
very small indirect topographical effects. Moreover, it substantially reduces
the requirement of knowing the topographic mass-density distribution, as
the error in density committed in the topographical effect is to a large extent
compensated by the error produced in the condensed topographical effect.
Therefore, reasonable results can be obtained even when a standard density
assumption or a coarse density model is used. However, we believe, that
the presented geoid model can be further improved with finer digital density
model, if it becomes available.

The mean value of our geoid solution is 13.3 cm above the average
of GNSS/levelling values. This corresponds very well with the estimated
constant height system offset for France which is −13.2 cm according to
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Rülke et al. (2012, Table 3). This result is also an important topic for fur-
ther discussion as we believe that the mean value of computed gravimetric
geoid model compared to the GNSS/levelling geoidal heights can be a useful
information on the used height system.

Last but not least, we would like to emphasize the importance of the
physical rigor in the choice of the computation techniques. This is espe-
cially true of the most problematic step of the geoid computation procedure,
the downward continuation. This task is in the background of the motiva-
tion for using the Helmert space, where we construct gravity functionals
which are harmonic above the geoid (to the extent to which the assumed
topographical density is known) and can therefore be continued downward
rigorously using the Poisson technique. The numerical evaluation of this
step is widely discussed, mainly due to its numerical instability, but the
results obtained in our experiment show that it is possible to evaluate this
step with a reasonable accuracy even for data on 1′ × 1′ mesh.
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Bodelle et al., 1980: Carte géologique de la France et de la marge continentale, 1:1500 000,
1978–1979.

225



Janák J. et al.: Computation of precise geoid model of Auvergne . . . (201–229)

Denker S., 2004: Evaluation of SRTM3 and GTOPO30 terrain data in Germany. In:
Gravity, Geoid and Space Misisions. IAG Symposia 129, Jekeli C. et al. (eds),
Springer, Berlin, 218–223.

Duquenne H., 2007: A data set to test geoid computation methods. Proceedings of the
1st Internatiaonal Symposium of the International Gravity Field Service (IGFS),
Istambul, Turkey. Harita Dergisi, Special Issue 18, 61–65.
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W. E., 1999: Determination of the boundary values for the Stokes-Helmert problem.
J. Geodesy, 73, 180–192.
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