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Abstract: We have developed a simple and fast quantitative method for depth and

shape determination from residual gravity anomalies due to simple geometrical bodies

(semi-infinite vertical cylinder, horizontal cylinder, and sphere). The method is based on

defining the anomaly value at two characteristic points and their corresponding distances

on the anomaly profile. Using all possible combinations of the two characteristic points

and their corresponding distances, a statistical procedure is developed for automated

determination of the best shape and depth parameters of the buried structure from gravity

data. A least-squares procedure is also formulated to estimate the amplitude coefficient

which is related to the radius and density contrast of the buried structure. The method is

applied to synthetic data with and without random errors and tested on two field examples

from the USA and Germany. In all cases examined, the estimated depths and shapes are

found to be in good agreement with actual values. The present method has the capability

of minimizing the effect of random noise in data points to enhance the interpretation of

results.
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1. Introduction

The aim of gravity survey is to determine the depth and shape of buried
structures of economic interest which reveal themselves as anomalies on the
maps or the profiles. The measured anomalies are often used in a qualita-
tive way to assist regional geological interpretations. However, sometimes
an individual residual anomaly is found which stands out so clearly that it
can be separated from the regional background and the neighbouring in-
terferences (Nettleton, 1976) and which is so simple in appearance that it
can be considered as caused by a single structure. In this case, quantitative
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methods of interpretation can be used to determine the depth and shape of
the buried structure.

The 2D (Tanner, 1967), 2.5 (Chakravarthi, 2011) or 3D (Cordell and Hen-
derson, 1968; Götze and Lahmeyer, 1988) continuous modelling techniques
are widely used to interpret gravity data. However, they are involved with
personal prejudices and judgements as well as requiring density informa-
tion as part of the input, along with some depth information obtained from
geological and/or other geophysical data. Thus, the resulting model can
vary widely, depending on these factors, and still give a calculated curve in
close agreement with the observed data. On the other hand, the advantage
of fixed geometry (spheres and cylinders) methods over continuous mod-
elling methods is that they require neither density nor depth information
and they can be applied if little or no factual information other than the
gravity data is available. The models may not be geologically realistic, but
usually approximate equivalence is sufficient to determine whether the form
and magnitude of calculated gravity effects are close enough to the observed
gravity data to make the geological postulate reasonable. Moreover, for in-
terpreting simple geological structures, fixed geometry methods can be both
fast and accurate.

Simultaneous estimation of the depth and shape of a buried structure
from a residual gravity anomaly profile due to simple geological structure
has drawn considerable attention. The methods generally fall into one of
two categories. The first category is the convolution methods, in which sim-
ple models are convolved with the same moving average filters or numerical
horizontal derivative filters as applied to the observed gravity data (e.g.
Abdelrahman and El-Araby, 1996; Abdelrahman et al., 2001a & 2006), and
correlation factors between successive least-squares residual gravity anoma-
lies (Abdelrahman and El-Araby, 1993). These methods can be applied to
both residual and observed data. However, the convolution and correlation
methods may be excluded when interpreting a residual gravity anomaly due
to a purely local structure because these methods are highly sensitive to er-
rors in the anomaly amplitude resolution and they are lengthy and tedious.

The second category is the methods which can be applied only to residual
gravity anomaly due to a purely local structure to estimate the shape and
depth. The methods include, for example, the Walsh transform technique
(Shaw and Agarwal, 1990), use of quadratic equations (Nandi et al., 1997),
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least-squares minimization approaches (Abdelrahman and Sharafeldin, 1995;
Abdelrahman et al., 2001b; Essa, 2014), iterative methods (Abdelrahman
and El-Araby, 1996), constrained and penalized nonlinear optimization tech-
niques (Tlas et al., 2005), use of a common intersection point of depth curves
(Essa, 2007), non-convex and nonlinear Fair function minimization, adaptive
simulated annealing, and stochastic optimization algorithm (Asfahani and
Tlas, 2012), deconvolution technique and use of simplex algorithm for linear
optimization (Asfahani and Tlas, 2015). However, most of these methods,
particularly those given by Abdelrahman and Sharafeldin (1995), Abdelrah-
man et al. (2001b), Abdelrahman and El-Araby (1996) and Essa (2007 &
2014) are based on defining the anomaly value at the origin [g(max)] and
it remains as a fixed parameter in the process, and hence they are highly
subjective in determining the shape and depth of the buried structure from
the residual gravity anomaly profile.

To address the above problem and to make the problem computation-
ally tractable on a personal computer, a simple and fast statistical method
to determine the depth and shape of a buried structure from a residual
gravity anomaly profile, has been developed. The method uses all possible
combinations of two characteristic points and their corresponding distances
for automated determination of the best shape and depth parameters of
the buried structure from gravity data. The advantage of the present tech-
nique over nonlinear least-squares methods and depth-shape curves methods
(Abdelrahman et al., 2001b & 2006; Abdelrahman and El-Araby, 1996; Essa,
2007 & 2014), is that it has the capability of minimizing the effect of random
errors in the data points to enhance the interpretation results because the
method uses all successful combinations of data points several times. When
our statistical approach is used, the use of anomaly value at the origin plays
a minor role in determining the model parameters. The method is applied
to synthetic data with and without random errors and tested on two field
examples from the USA and Germany.

2. Theory

The general gravity anomaly expressions produced by a sphere, an infinitely
long horizontal cylinder, and a semi-infinite vertical cylinder can be given
as (Abdelrahman et al., 2001a):
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g(x, z, q) =
A

(x2 + z2)q
, (1)

where

A =

⎧⎪⎨
⎪⎩
πGρR2 [mGal · depth unit]
2πGρR2z [mGal · (depth unit)2]
(4/3)πGρR3z [mGal · (depth unit)3] ,

q =

⎧⎪⎨
⎪⎩
0.5 for a semi-infinite vertical cylinder
1.0 for a horizontal cylinder
1.5 for a sphere .

In equation (1), z is the depth of the body, x is the position coordinate,
A is the amplitude coefficient related to the density contrast (ρ) and the
radius (R) of the buried structure, q is the shape value and G is the universal
gravitational constant.

For all shapes (q), equation (1) gives the following two equations at xi

and xj respectively:

g(xi) =
A

(x2i + z2)q
, (2)

g(xj) =
A

(x2j + z2)q
, (3)

where xi and xj are two different horizontal distances from the point of the
origin to the point where the residual gravity has g(xi) and g(xj) values,
respectively.

Let L = g(xi)/g(xj), then using equations (2), and (3), we obtain:

z =

√
L1/qx2i − x2j
1− L1/q

. (4)

For all shapes, equation (4) will converge to a depth solution when xi �=
xj, xi + xj �= 0, L1/q < 1, and x2j < x2iL

1/q . These conditions should
be implemented in any computer program in order to determine a reliable
depth estimate from all successful combinations of xi and xj. Theoretically,
one successful value of xi and xj is sufficient to determine the depth to
the buried structure from equation (4), but in practice, more successful
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combinations of xi and xj are desirable because of the presence of noise in
the data. However, equation (4) can also be used not only to determine the
depth but also to estimate simultaneously the shape of the buried structure.
The procedure is as follows:

1) Digitize the residual anomaly profile at several points including the cen-
tral point x = 0.

2) For each xi and xj value, apply equation (4) to the residual anomaly
profile, yielding depth solutions (z) for all possible q values. We then
compute the standard deviation of depths for each value of (q).

3) Finally, we use a search algorithm to find the value of (q) at which the
standard deviation of the depths is a minimum.

The minimum standard deviation is used as a criterion for determining
the correct depth and the shape of the buried structure. When the correct
value of the shape is used, the standard deviation of the depths is always
less than the standard deviations computed using wrong values of (q).

Knowing the computed depth (zc) and shape value (qc), and applying
the least-squares method to equation (1), the amplitude coefficient (A) can
be determined from:

A =

N∑
k=1

D(xk)

(x2k + z2c )
qc

N∑
k=1

1

(x2k + z2c )
2qc

, (5)

where D(xk) is the observed residual gravity anomaly.

3. Theoretical examples

3.1. Noise Free Data

We have computed three different residual gravity anomalies due to a semi-
infinite vertical cylinder (A1 = 20 mGal·km, z = 4 km, and q = 0.5), a
horizontal cylinder (A2 = 500 mGal·km2, z = 6 km, and q = 1), and a
sphere (A3 = 15000 mGal·km3, z = 10 km, q = 1.5). Figure 1 shows the
residual gravity anomalies computed from the following model equations:

g(x) =
A1

(x2 + 42)0.5
for the semi-infinite vertical cylinder, (6)
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g(x) =
A2

(x2 + 62)
for the horizontal cylinder, (7)

g(x) =
A3

(x2 + 102)1.5

.

for the sphere. (8)

Equation (4) has been applied to each residual anomaly profile, yielding
depth solutions for all possible q values (0.1, 0.2, 0.3, ..., and 2.0) for all
successful combinations of xi and xj (200 combinations). We then computed
the standard deviation of the depths for each shape value. The depths, their
average values, and their standard deviations are given in Table 1.

Table 1. Numerical results otained from the gravity anomaly due to a semi-infinite vertical
cylinder (z = 4 km and q = 0.5), a horizontal cylinder (z = 6 km and q = 1.0),and a
sphere (z = 10 km and q = 1.5). Number of successful combinations = 200 (best results
in bold).

Model Semi-infinite Horizontal cylinder Sphere
vertical cylinder

Shape Average Standard Average Standard Average Standard
value depth deviation depth deviation depth deviation
(q) value (km) value (km) value (km)
0.1 22.291 8.7378 22.287 8.7496 20.866 9.9121
0.2 17.974 11.452 19.94 10.471 17.235 11.471
0.3 11.995 11.795 16.212 11.791 13.333 11.565
0.4 4.5771 6.3103 13.17 11.707 10.095 10.352
0.5 4.0000 0.0000 9.2521 10.381 7.9602 8.4432
0.6 5.0021 0.40715 6.5126 7.851 6.378 5.8463
0.7 5.8356 0.69118 4.4025 3.175 5.7869 3.0532
0.8 6.568 0.91797 4.7338 0.46357 6.1115 0.85552
0.9 7.2296 1.1107 5.4075 0.19556 6.8126 0.638
1 7.8377 1.2805 6.0000 0.00000 7.4417 0.47992
1.1 8.4036 1.4335 6.538 0.15791 8.0196 0.35353
1.2 8.9349 1.5739 7.035 0.29214 8.5579 0.24733
1.3 9.4372 1.704 7.4996 0.40994 9.0641 0.15523
1.4 9.9148 1.8258 7.9376 0.51557 9.5435 0.073581
1.5 10.371 1.9407 8.353 0.61181 10.0000 0.00000
1.6 10.808 2.0497 8.7492 0.70053 10.437 0.067149
1.7 11.229 2.1535 9.1286 0.7831 10.856 0.12905
1.8 11.635 2.2529 9.4931 0.86053 11.26 0.18657
1.9 12.027 2.3483 9.8443 0.93357 11.649 0.24039
2.0 12.407 2.4401 10.184 1.0028 12.027 0.29103
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Fig. 1. A gravity anomaly over (a) a semi-infinite vertical cylinder (A1 = 20 mGal·km,
z = 4 km, and q = 0.5); (b) a horizontal cylinder (A2 = 500 mGal·km2, z = 6 km, and
q = 1); and (c) a sphere (A3 = 15000 mGal·km3, z = 10 km, and q = 1.5).
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The result of this study shows that the correct solution for the semi-
infinite vertical cylinder model (z = 4 m, and q = 0.5), the horizontal
cylinder model (z = 6 km and q = 1), and the sphere model (z = 10 km
and q = 1.5) occurs at zero standard deviation of the depths. The zero
value of the standard deviation is expected because the computed depths
from the residual anomaly profile using all successful combinations of xi and
xj are equal to the true depth of the model when the correct shape value is
used. The computed depth and the shape are in excellent agreement with
the actual depth and shape of each model.

3.2. Effect of Random Noise

To test the stability of our method in the presence of noise, 10% random
errors were added to each residual gravity anomaly to produce noisy data
(Figure 2). Following the same interpretation method, the results of all
successful combinations (90) are shown in Table 2.

Table 2 shows that when the data contain 10% random errors, the min-
imum standard deviation occurs at z = 4.36 km and q = 0.5 for the semi-
infinite vertical cylinder model, z = 6.42 km and q = 1.1, for the horizontal
cylinder model, and z = 9.98 km and q = 1.4 for the sphere model. This
demonstrates that the present method will give reliable model parameters
(z and q) even when the residual gravity anomaly is contaminated with
random errors.

3.3. Effect of Wrong Origin

This procedure begins with selecting the origin (x = 0) where the residual
anomaly attains its maximum value and may lead to errors in the depth
and shape when interpreting real data. This occurs when precise residual
anomalies are not available, and when the anomalies are not well isolated
from each other and when the sources are not truly idealized. We investi-
gate this problem in this subsection.

We have computed a residual gravity anomaly due to a semi-infinite
vertical cylinder (q = 0.5) buried at depths of 4 km and 6 km. We have
introduced error of ±50, ±100 m, and ±150 m to the horizontal coordinate.
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Fig. 2. A noisy gravity anomaly over (a) a semi-infinite vertical cylinder (A1 = 20
mGal·km, z = 4 km, and q = 0.5); (b) a horizontal cylinder (A2 = 500 mGal·km2, z = 6
km, and q = 1); and (c) a sphere (A3 = 15000 mGal·km3, z = 10 km, and q = 1.5).
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Table 2. Numerical results otained from the noisy gravity anomaly due to a semi-infinite
vertical cylinder (z = 4 km and q = 0.5), a horizontal cylinder (z = 6 km and q = 1.04),
and a sphere (z = 10 km and q = 1.5). Number of successful combinations = 90 (best
results in bold).

Model Semi-infinite Horizontal cylinder Sphere
vertical cylinder

Shape Average Standard Average Standard Average Standard
value depth deviation depth deviation depth deviation
(q) value (km) value (km) value (km)
0.1 22.425 8.6721 22.439 8.638 20.678 9.9799
0.2 17.355 11.73 20.631 10.067 16.965 11.438
0.3 9.7093 11.179 16.729 11.725 13.188 11.396
0.4 3.9499 4.1582 13.01 11.787 9.888 10.006
0.5 4.356 0.99297 10.265 10.802 7.745 7.9343
0.6 5.3436 1.1693 6.5951 7.9913 6.7453 5.7781
0.7 6.1779 1.3738 4.1538 2.5166 6.7707 4.4086
0.8 6.9171 1.565 4.9336 2.3652 6.9869 3.2699
0.9 7.5883 1.7409 5.5815 2.2877 7.4291 2.5024
1 8.2073 1.9036 6.1563 2.239 8.0701 2.4071
1.1 8.7846 2.0551 6.4226 0.93677 8.3812 1.6631
1.2 9.3276 2.1973 6.9227 0.96346 8.9525 1.581
1.3 9.8416 2.3316 7.3878 1.0144 9.4809 1.5565
1.4 10.331 2.4591 7.8255 1.0743 9.9796 1.5498
1.5 10.799 2.5806 8.2403 1.1378 10.454 1.5532
1.6 11.247 2.697 8.6355 1.2023 10.907 1.5632
1.7 11.679 2.8088 9.0138 1.2664 11.342 1.5778
1.8 12.096 2.9164 9.3772 1.3296 11.761 1.5955
1.9 12.499 3.0204 9.7274 1.3915 12.165 1.6156
2.0 12.89 3.121 10.066 1.4519 12.557 1.6375

We applied our interpretation method to the residual anomalies thus ob-
tained. The results are shown in Table 3 and 4.

In the case that the actual depth to the buried vertical cylinder is 4 km,
the minimum standard deviation occurs at z = 4 km and q = 0.5; z = 5.02
km, and q = 0.6; and z = 5.03 km, and q = 0.6, when the offset is ±50 m,
±100 m, and ±150 m, respectively (Table 3). The error in depth and shape
value is about 10%. However, in case that the actual depth is 6 km, the
minimum standard deviation occurs at z = 6.004 m and q = 0.5; z = 6.016
km, and q = 0.5; and z = 6.04 km, and q = 0.5, when the offset is ±50,
±100 m, and ±150 m respectively (Table 4). In this case, the computed
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Table 3. Numerical results otained from the gravity anomaly due to a semi-infinite vertical
cylinder (z = 4 km and q = 0.5, after introducing error of ±50 m, ±100 m, and ±150 m
to the horizontal coordinate. Number of successful combinations= 995, (best result in
bold).

Offset 50 m 100 m 150 m
Shape Average Standard Average Standard Average Standard
value depth deviation depth deviation depth deviation
(q) value (km) (km) value (km) (km) value (km) (km)
0.1 22.2913 8.737471 22.29174 8.736526 22.1653 8.8677
0.2 17.97676 11.4485 18.11182 11.38144 17.99254 11.42597
0.3 12.25692 11.80837 12.02437 11.7686 11.6936 11.68509
0.4 4.478177 6.124505 5.03334 6.776616 5.204922 6.925853
0.5 4.000003 0.265515 4.123866 1.622493 4.391082 2.736029
0.6 5.005333 0.466841 5.015129 0.61759 5.031609 0.825259
0.7 5.839765 0.726825 5.852389 0.828216 5.874366 0.985367
0.8 6.572619 0.945842 6.586808 1.02802 6.611555 1.162123
0.9 7.234566 1.13494 7.249915 1.207622 7.276685 1.329435
1 7.843026 1.302718 7.859348 1.370045 7.88781 1.484705
1.1 8.409171 1.454607 8.426358 1.51869 8.456326 1.628987
1.2 8.940717 1.594164 8.958698 1.65621 8.990051 1.763808
1.3 9.443276 1.723833 9.462002 1.784591 9.494651 1.89055
1.4 9.921089 1.845365 9.94052 1.90533 9.974396 2.010361
1.5 10.37745 1.960064 10.39756 2.019574 10.4326 2.124173
1.6 10.81499 2.068924 10.83574 2.128223 10.87192 2.232745
1.7 11.23584 2.172725 11.25721 2.23199 11.29447 2.336698
1.8 11.64176 2.272092 11.66373 2.331455 11.70204 2.436547
1.9 12.03421 2.367531 12.05677 2.427095 12.0961 2.53272
2.0 12.41445 2.459462 12.43758 2.519304 12.4779 2.625581

shape value is in excellent agreement with the actual one and the error is
less than 1% on the depth.

It is verified numerically that in most cases, the present method will give
reasonable model parameters (z and q) when the offset of the origin of the
residual anomaly profile is small and particularly when the depth to the
buried structure is relatively deep.

3.4. Extension to more complex shape

Consider, for example, the gravity field:

123



Abdelrahman E., Gobashy M.: Depth and shape solutions from residual . . . (113–132)

Table 4. Numerical results obtained from the gravity anomaly due to a semi-infinite
vertical cylinder (z = 6 km and q = 0.5, after introducing error of ±50 m, ±100 m, and
±150 m to the horizontal coordinate. Number of successful combinations = 200, (best
result in bold).

Offset 50 m 100 m 150 m
Shape Average Standard Average Standard Average Standard
value depth deviation depth deviation depth deviation
(q) value (km) (km) value (km) (km) value (km) (km)
0.1 19.93987 10.47232 20.06987 10.38274 19.94991 10.45508
0.2 12.91684 11.70444 12.80458 11.68851 12.70123 11.66414
0.3 6.394335 7.739274 6.573078 7.821957 6.373522 7.585099
0.4 4.732241 0.556722 4.860888 1.641535 5.008582 2.253349
0.5 6.003876 2.32E-01 6.015646 0.471295 6.035598 0.729651
0.6 7.039808 0.371306 7.054549 0.549541 7.080229 0.774445
0.7 7.942921 0.566489 7.959363 0.70237 7.988034 0.89833
0.8 8.755008 0.741341 8.772779 0.856725 8.803765 1.034602
0.9 9.499229 0.896441 9.518154 1.000791 9.551148 1.167733
1 10.19021 1.036012 10.21018 1.13E+00 10.245 1.294146
1.1 10.83794 1.163395 10.85889 1.25731 10.89541 1.413453
1.2 11.44961 1.281013 11.47148 1.37244 11.50961 1.526139
1.3 12.03063 1.390635 12.05338 1.480521 12.09303 1.632886
1.4 12.58517 1.493581 12.60875 1.582559 12.64986 1.734359
1.5 13.11652 1.590859 13.14091 1.679373 13.18343 1.831155
1.6 13.62737 1.683258 13.65253 1.771625 13.69641 1.923791
1.7 14.1199 1.771404 14.14582 1.85986 14.191 2.012707
1.8 14.59595 1.855805 14.62259 1.944526 14.66905 2.09828
1.9 15.05705 1.93688 15.08441 2.025999 15.13211 2.180833
2 15.50454 2.014973 15.53259 2.104597 15.58149 2.260644

g(x) =
A4

(x2 + 42)0.5
− A4

(x2 + 152)0.5
, (9)

which represents a gravity field caused by a finite vertical cylinder (vertical
line approximation) with A4 = 200 mGal·km, z1 = 4 km, z2 = 15 km and
q = 0.5. Adapting the same procedure used in the above examples, the
results are given in Table 5. The minimum standard deviation occurs at
z = 5.07 km and q = 1.0. These results suggest that our interpretation
method may extended to infer a distinction in shape between an infinite
vertical cylinder (q = 0.5) and finite vertical cylinder (q = ∼1) and sphere
(q = 1.5).
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Table 5. Numerical results obtained from the gravity anomaly due to a finite vertical
cylinder (z1 = 4 km, z2 = 15 km, and q = 0.5). Number of successful combinations =
200 (best result in bold).

Shape Average Standard
value depth deviation
(q) value (km) (km)
0.1 22.76172 8.268753
0.2 20.83417 9.974456
0.3 18.50681 11.18468
0.4 15.29227 11.89993
0.5 12.21779 11.60309
0.6 8.766571 10.14627
0.7 5.970825 7.374289
0.8 4.254284 3.152769
0.9 4.478843 0.344384
1 5.076898 0.125388
1.1 5.606381 0.163368
1.2 6.089129 0.301223
1.3 6.536545 0.430123
1.4 6.955755 0.546314
1.5 7.351658 0.651905
1.6 7.727826 0.748911
1.7 8.086979 0.838886
1.8 8.431247 0.923008
1.9 8.762343 1.002182
2 9.081673 1.077111

4. Field Examples

To examine the applicability of the present method, the following two field
examples are presented.

4.1. Humble dome anomaly

The Humble oil field is located near the town of Humble in north-eastern
Harris County on the Upper Gulf Coast of Texas. Named for its location, the
field has drawn oil from an anhydrite and limestone reservoir in the cap rock
and on the flanks of a piercement salt dome in Eocene, Miocene, Oligocene,
and Pliocene formations. Figure 3 (Nettleton, 1962) shows the Bouguer
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gravity map of the Humble dome. Each dot on this map is representing
a gravity station. Figure 4 is a profile on the line A–A’ of the map. A
regional trend is removed graphically to give the residual curve shown and

Fig. 3. Bouguer gravity map, Humble dome, near Houston, TX, USA (Nettleton, 1962).

Fig. 4. Gravity profile on line AA’ of the Humble dome, near Houston, TX, USA and the
dome form as estimated from drilling and seismic data (Nettleton, 1962).
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the application of our method is carried out on the central part of this
residual anomaly profile (Figure 5). The anomaly profile (l6.62 km) was
digitized at an interval of 0.277 km. Equation (4) was used to determine
the depth and the shape of the buried salt dome using the present method.
The result of using 995 successful combinations of xi and xj is given in Table
6. The minimum standard deviation occurs at z = 5.05 km and q = 1.4.
The shape value thus obtained by the present method suggests that the
shape of the 3-D source body can be represented by a finite vertical cylinder
with a hemispherical roof. This is in good agreement with the dome form
(Figure 4) estimated by Nettleton (1962). Moreover, using equation (5) and
knowing the depth and the shape value of the Humble dome, the amplitude
coefficient A was found to be −1254.6 mGal·km2.8. The observed and the
calculated anomalies are shown in Figure 5.

Table 6. Numerical results of the Humble dome field example, USA. Number of successful
combinations = 995 (best result in bold).

Shape Average Standard
value depth deviation
(q) value (km) (km)
0.1 20.55527 10.30866
0.2 18.64775 11.33881
0.3 16.16818 12.1071
0.4 13.51026 12.27788
0.5 11.07518 11.84324
0.6 8.801613 10.86976
0.7 6.907022 9.47108
0.8 5.447431 7.785582
0.9 4.795857 6.472268
1 4.590444 5.595233
1.1 4.489796 4.815234
1.2 4.642013 4.497059
1.3 4.819036 4.285611
1.4 5.047946 4.238352
1.5 5.334606 4.344278
1.6 5.604139 4.452039
1.7 5.860173 4.559678
1.8 6.104785 4.666555
1.9 6.339486 4.772349
2 6.565449 4.876888
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Fig. 5. A residual gravity anomaly over the Humble dome, near Houston, TX, USA.

4.2. Wathlingen dome anomaly

The Wathlingen salt dome is situated in the southern part of the North-
west German Basin. An excellent detailed review of the geology of the salt
dome is given in Dubey et al. (2014). It is evident that the peak of the salt
diapirism in North Germany was probably at the end of the Late Juras-
sic and came to an end during the Lower Cretaceous. During the ascent
of the salt, the overlying horizontal beds were heavily inclined. Figure 6
shows the observed gravity anomaly over the Wathlingen salt dome (Dubey
et al., 2014). A central profile of a short length (5 km) of this anomaly was
digitized at an interval of 50 m (Figure 7) and was used to determine the
depth and the shape of the buried salt dome using the present method. The
result of using 2500 successful combinations of xi and xj is given in Table
7. The minimum standard deviation occurs at z = 3.2 km and q = 1. The
shape value thus obtained by the present method suggests that the shape
of the source body can be represented by a 2D horizontal cylinder buried
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Fig. 6. Gravity profile over the Wathlingen dome, Germany, and the dome form as esti-
mated from joint 3D modeling of gravity, gravity gradients, curvature derived from hor-
izontal gradients and horizontal directive tendency, geological and borehole information
(modified after Dubey et al. (2014)).

Fig. 7. A central gravity anomaly profile of 5 km length over the Wathlingen dome,
Germany, as digitized from the gravity anomaly of Figure 6.
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Table 7. Numerical results of the Wathlingene dome field example, Germany. Number of
successful combinations =2500 (best result in bold).

Shape Average Standard
value depth deviation
(q) value (km) (km)
0.1 15.08667 12.43876
0.2 8.208308 11.256
0.3 2.689076 5.652535
0.4 2.167202 3.340847
0.5 2.24565 2.319903
0.6 2.430294 1.759949
0.7 2.613941 1.247812
0.8 2.815732 0.958196
0.9 3.0097 0.716992
1 3.199783 0.572868
1.1 3.38805 0.591558
1.2 3.566313 0.610804
1.3 3.736047 0.630149
1.4 3.898384 0.649383
1.5 4.054219 0.668395
1.6 4.20428 0.687129
1.7 4.349166 0.705553
1.8 4.489379 0.723655
1.9 4.625345 0.741433
2 4.757428 0.758888

at a depth of about 3.2 km. This is in good agreement with the dome form
estimated by Dubey et al. (2014) who derived a 3D density model of the
Wathlingen salt dome from joint modelling of gravity, gravity gradients, cur-
vature derived from horizontal gradients and horizontal directive tendency,
geological and borehole information. They found that the Wathlingen salt
dome is a mushroom-structured salt body, which is 14 km long and 4–8
km wide extending up to about 4 km depth. Moreover, using equation (5)
and knowing the depth and the shape value of the Wathlingen dome, the
amplitude coefficient A was found to be −157.76 mGal·km2. The observed
and the calculated anomalies are shown in Figure 7.

It is evident from the field examples that our method gives good insight
concerning the nature of the geology (shape and depth) of salt domes.
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5. Conclusions

The problem of determining the shape and depth of a buried structure from
gravity data can be solved using the present method. A simple and rapid
numerical approach is formulated to use the anomaly values at two char-
acteristic points and their corresponding distances on the residual anomaly
profile for determining simultaneously the shape and the depth of the buried
structure. The repetition of the method using all successful combinations
of such pairs of measured points will lead to the best results. The advan-
tages of this statistical method over the least-squares methods are: (1) the
method does not require computation of analytical or numerical derivatives
with respect to the model parameters, (2) the method is less sensitive to
errors in gravity anomaly even when the origin of the anomaly profile is de-
termined incorrectly, and (3) the method does not depended on the anomaly
value at the origin in determining the model parameters. In the synthetic
examples, the solutions for depth and shape are still in good agreement
with the actual model parameters. The maximum error in both model pa-
rameters is less than 10%. The method is developed to quantify the shape
factor and to determine the depth. In other words, a roughly quantitative
shape-related parameter and depth can be derived from gravity data. These
two parameters might be used to give a good insight concerning the nature
of the geology (shape and depth) of the buried structure.
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