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Abstract: In the present paper we are dealing with the problem of the connection of

two local geodetic datums in which the classical transformation procedures fail to give

sufficient solution. Thereafter, we additionally implemented Least Squares Collocation

in order to model the remaining residuals of the initial transformation. We tested this

methodology in an area located in Northern Greece and we found significant improvement

of the transformation results. The implementation of Least Squares Collocation refines

the statistical behaviour of the inconsistencies regarding their extreme values (minimum

and maximum) from almost 70 to 23 cm, while the standard deviation is reduced from

the level of 27 to 10 cm.

Key words: Geodetic Reference System, Least Squares Collocation, Datum, Coordinate
Transformation

1. Introduction

The transformation between different geodetic reference systems (or datums
following the classical terminology) was and remains a hot spot project for
the daily practice of surveyors. A great number of papers, studies and re-
ports deal with this problem (e.g. Collier et al., 1998; Cai, 2000). The
rapid development of GNSS technology has brought an extra requirement
for the connection of the classical local geodetic datums with the more mod-
ern global Terrestrial Reference Frames (TRFs).

In the majority of cases, the 2-D or 3-D similarity transformation (e.g.
Strang and Borre, 1997) is used in order to connect a local geodetic refer-
ence frame to a TRF. Nevertheless, it is rather possible that the similarity
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transformation cannot absorb all the blunders, systematic effects and incon-
sistencies, thus leading to high residuals. Thereafter, some additional math-
ematical tools were developed to model the remaining transformation resid-
uals such as: Least Squares Collocation (LSC, e.g. Collier et al., 1998; You
and Hwang, 2006; Li et al., 2012), Finite Elements Model (FEM, e.g. Kohli
and Jenni, 2008) or other models (e.g. Dewhurst, 1990).

In the present paper, we discuss a transformation procedure between two
local geodetic reference frame implementations for a region in Greece; the
official geodetic datum, called the Hellenic Geodetic Reference System of
1987 (HGRS1987) and the “old Bessel”. For this purpose, we use an initial
transformation step and a prediction step for the remaining residuals. For
validation purposes, we apply the suggested algorithm to a map sheet of
“old Bessel” of 1:1000 scale located in the northern part of the country in
order to align the old datum to the HGRS1987.

2. Local geodetic datums in Greece

As far as Greece is concerned there are three geodetic reference systems for
civil use. Namely:

(1) The newest one is the Hellenic Terrestrial Reference System of 2007
(HTRS07, Katsambalos et al., 2010). It is a densification of the Eu-
ropean Terrestrial System of 1989 (ETRS89, Boucher and Altamimi,
2011). The coordinates of the CORS GPS network, called the Hel-
lenic Positioning System (HEPOS) refer to HTRS07. For its practical
implementation, the ellipsoid of GRS80 and the Universal Transverse
Mercator cartographic projection (one zone) are used.

(2) The HGRS1987 (HEMCO, 1987; Veis, 1996). It was developed in
the late ’80s, assimilating classical and satellite observations (SLR and
GPS). It is connected to the HTRS07 with an accuracy of 8.3 cm, na-
tionwide (Katsambalos et al., 2010). It uses the ellpsoid of GRS80 and
the Transverse Mercator (one zone).

(3) The old Greek datum (GR-Datum, e.g. Takos, 1989). There are two
versions of the GR-Datum:
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• The so called “new Bessel”. It was realized in the mid-80s after
applying new adjustment strategies (Takos, 1989), using only clas-
sical observations. The ellipsoid of Bessel of 1841 was selected,
while its equidistant projection Hatt (Mugnier, 2002) was used.
The Hatt is a kind of equidistant projection, which inevitably leads
to a great number of map sheets. The country was divided into
ellipsoidal trapezoids of 30′ × 30′ (1:100000 scale). Totally, 137
map sheets were produced. Each map sheet holds a different co-
ordinate system, causing a lot of confusion for the surveyors. The
“new Bessel” is connected to HGRS1987 through 2nd degree poly-
nomials referred to each sheet (HEMCO, 1995).

• The so-called “old Bessel”. It was realized before the Second World
War and it carries significant inconsistencies and systematic ef-
fects. The great majority of the rural areas in the northern part
of the country referred to the “old Bessel”. It uses the Bessel 1841
ellipsoid and it was realized by the division of the northern part
of the country into ellipsoidal trapezoids of 6′ × 6′. The derived
mapping infrastructure of “old Bessel”, were surveying layouts of
1:1000 and 1:5000 scale, respectively. Each of the 6′×6′ trapezoids
has its own coordinate system. In addition, the associated clas-
sical observations were collected during mid ’30s. Till now, there
is no officially accepted transformation procedure to connect the
“old Bessel” to any of the existing datums, not even with the “new
Bessel”. When a surveyor confronts the transformation problem
between the “old Bessel” and the HGRS1987 he/she often uses
in-situ techniques, focusing only on a limited area of interest (e.g.
one or two city-blocks).

3. Mathematical models

The straightforward choice for the connection of two datums is to initially
apply some well-known tools, such as the 2D similarity or polynomial trans-
formations. By this step, one can model the major part of their systematic
differences. Let us briefly describe these two tools.
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3.1. The similarity transformation

Let as assume that we have two sets of projection coordinates. X, Y referring
to the new system and x, y referring to the old system, respectively. The
2D similarity transformation model yields (point-wise):

Xi = μ cos θxi + μ sin θyi + tx + exi ,

Yi = −μ sin θxi + μ cos θyi + ty + eyi ,
(1)

where μ and θ are the scale and the rotational angle which connect these two
systems, tx, ty the translations between the two systems with respect to the
x and y axes, respectively. Finally, the terms exi , eyi refer to the inherited
coordinate errors. After a classical least squares adjustment (e.g. Koch,
1987), the optimal parameters (scale, angle and translations) are estimated.
Its advantage is the fact that the object’s shape between the two systems is
preserved.

3.2. The polynomials of second degree

Alternatively, one can apply the 2nd degree polynomials (e.g. Dermanis
and Fotiou, 1992; HEMCO, 1995) in order to connect the new and the old
systems, respectively (point-wise):

Xi = a0 + a1x
2
i + a2y

2
i + a3xiyi + a4xi + a5yi + exi ,

Yi = a6 + a7x
2
i + a8y

2
i + a9xiyi + a10xi + a11yi + eyi ,

(2)

where a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 are the 12 parameters which
are estimated through the least squares adjustment. The use of the poly-
nomials has the advantage of adding 8 more parameters than the similarity
transformation for the mapping of the systematic effects. On the other hand,
the use of the polynomials does not preserve the shape for the objects when
it is implemented.

3.3. The LSC implementation

The use of the LSC is widely used in Geodesy. It can serve either for the
explicit quantity estimation, for example, geoid (Moritz, 1980) or for predic-
tion procedure. The advantage of the LSC is its property of the minimum

42



Contributions to Geophysics and Geodesy Vol. 47/1, 2017 (39–51)

square error of the prediction (Koch, 1987). The mathematical formulation
for the LSC implementation is (Moritz, 1972; Tscherning, 1976):

ŝ′ = Cs′s (Css +D)−1 s , (3)

where ŝ′ the vector of the predicted values, s the vector of the observations,
Cs′s the cross-covariance matrix between the predicted values and the obser-
vations, Css the covariance matrix of the observations and D the matrix of
the observations noise. In our case, the observations are the reduced resid-
uals with respect to their mean average (we subtract the residual’s mean
average from each residual component). The residuals are derived after the
application of the initial transformation step (similarity transformation or
2nd degree polynomials, respectively). We should underline that Eq. (3)
refers to the signal prediction (predicted values). However, in our case, we
are dealing with residuals, which by their very nature cannot be separated
into signal and noise, as it is expressed through Eq. (3). The application
of the least squares adjustment detrends the systematic inconsistencies be-
tween the two systems. The residuals cannot be considered as classical
observations, since they are the estimated errors of the least squares ad-
justment. We should additionally note that for this particular application,
the noise of the observations is difficult to accurately define. It is rather
possible that the older observations are severely affected from various sys-
tematic errors. On the other hand, the classical least squares collocation
(e.g. applied for the geoid computation) refers to observed quantities like
the gravity measurements which comprise the pure signal plus the associ-
ated noise.

For the non common points, the predicted coordinates will be estimated
according to the following general formula (pointwise):

X′
i = f

(
x′
i, ri

)
+ ŝ′xi

+m, (4)

where X′
i the coordinates with respect to the new reference frame, x′

i the
coordinates with respect to the old reference system, ri the estimated pa-
rameters of the initial transformation step, f is the symbol of the function
which is related to the first transformation step, ŝ′xi

the predicted values af-
ter the LSC application and m the mean average of the estimated residuals
from the initial transformation step.
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As a general rule, one should initially compute the so called empirical
variance and covariance functions, as follows (You and Hwang, 2006):

C0 =
1

nk

nk∑
l=j

s2l (5a)

Css (dk) =
1

nk

nk∑
i<j

sisj (5b)

where dk is a predefined distance interval which comprises a number of
observation points which lay inside this interval and nk the number of dis-
tances in each interval. Finally, the empirically derived function is fitted to
an analytical mathematical expression (e.g. Gaussian, exponential or other
numerous functions) using the least squares.

4. Numerical application

The aforementioned methodology is applied to a map sheet located in North-
ern Greece, called Perithorion (a village in the Prefecture of Drama). Fig-
ures 1 and 2 illustrate the village’s position and the map sheet of Perithorion

Fig. 1. The village of Perithorion (Google Earth).
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Fig. 2. The associated map sheet of Perithorion with respect to the “old Bessel” (scale
1:1000, credits to the Ministry of Agriculture and Foods).
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with respect to the “old Bessel” datum, respectively.
The map sheet (scale 1:1000) was digitized from the state agency (Min-

istry of Agricultural Development and Foods) with respect to its own coor-
dinate system. The map resolution is at the level of 20 cm. This is defined
from the fact that the associated eye resolution is approximately 0.2 mm
(e.g. Davidson, 1993). Applying a simple rule of thumb, we can imply that
the points which lay at a map of scale 1:1000 can be identified with an
accuracy of 20 cm, according to the following formula:

σmap = p× 0.02 cm , (6)

where σmap the accuracy of the derived cartographic coordinates and p the
denominator of the scale (in our case 1000). We identified sixty points on
the map which nowadays exist (laying at building edges, roads, fences).
These points were remeasured via RTK in the spring of 2015, referring to
the HGRS1987. Ten of these points were not included in the transformation
procedure; they were used as cross validation points for the methodology’s
assessment.

Initially, we implemented two different options for the first step: The
classical 2-D similarity transformation and the 2nd degree polynomials, de-
scribed in the previous section. Tables 1 and 2 present the residuals using
the 2D similarity and 2nd degree polynomials, respectively, while Figure 3
depicts their associated residuals of the Helmert and polynomial transfor-
mations.

The residual statistics reveal that there are biases which contaminate
the results of both transformations. The minimum and the maximum val-
ues for both cases exceed 50 cm in an absolute sense, while the standard
deviations are always larger than 20 cm. In addition, the application of

Table 1. The residuals statistics after applying the 2D similarity transformation (from
“old Bessel” to HGRS1987) for each coordinate component. Values are in cm.

δX δY

min −78.9 −77.9

max 75.8 70.4

mean 0.3 0.2

std 27.5 31.2
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Table 2. The residuals statistics after applying the 2nd degree polynomials (from “old
Bessel” to HGRS1987) for each coordinate component. Values are in cm.

δX δY

min −67.1 −68.5

max 68.5 68.7

mean 0.2 0.2

std 26.8 27.4

the 2nd degree polynomials does not offer significantly better performance.
Obviously, there are undetectable systematic effects which contaminate the
transformation.

In the second step we proceeded with the LSC implementation. The set
of the 2D residuals were reduced with respect to their mean average. We
used the residuals of the second degree polynomials (which show slightly
better statistical behaviour) and we fit the following cardinal sine function
(or sinc or sampling function, see e.g. Brown and Churchill, 1993) to the
empirical one (d is the distance expressed in km):

Fig. 3. The residuals of the 2D similarity and the polynomial transformations, respectively.
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Css(d) = C0

(
k

d

)
sin

(
d

k

)
. (7)

The fitted parameters were the covariance C0 and the factor k. For our
case, the adjusted parameters are:

Ĉ0 = 940.5642 cm2

k̂ = 0.0395 km

The estimated covariance function was used for the error prediction for both
the coordinates’ components (X and Y). We should underline that the sinc
function is widely used in the signal processing and the Fourier transfor-
mations. In our case, it optimally represents the errors’ inhomogeneity and
roughness, respectively.

Figure 4 depicts the empirical and the fitted covariance functions. We
used the cardinal sine function because the simpler Gaussian or the expo-
nential ones are not suitable for this specific case. The use of the Gaus-
sian or exponential function cannot sufficiently fit the data, due to the
extremely rough character of the errors. We also tested the Hirvonen func-
tion (Hirvonen, 1962) but it still presented major deficiencies regarding the

Fig. 4. The empirical and the fitted covariance functions.
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fitting procedure.
In order to evaluate the results, we compared the results of the suggested

methodology with the coordinates we obtained via RTK at the ten cross val-
idation points. We implemented the Equation 3 (ibid.) without involving
the matrix D for the observational noise (please see our discussion in section
3.3).

Table 3 shows the discrepancies between the derived coordinates from
the suggested methodology and the estimated coordinates with respect to
the HGRS1987 via RTK at the ten cross validation points.

Table 3. The discrepancies of the derived coordinates between the suggested methodology
and the measured HGRS1987 coordinates at the 10 cross validation points. Values are in
cm.

δX δY

min −23.0 −20.7

max 19.1 17.7

mean 1.0 0.9

std 10.3 9.9

From Table 3 we can imply that the methodology improves significantly
the results of the transformation between the two datums. The standard
deviation of the differences is approximately 10 cm, while the extreme dis-
crepancies (minimum and maximum) are below the level of 25 cm (in an
absolute sense). This practically means that we have almost 3 times im-
provement regarding the standard deviation and 3 times better behaviour of
the extreme differences, respectively. Moreover, the statistical performance
for both the coordinate components is quite similar. The mean averages of
the discrepancies are found at the level of 1 cm. We should also underline
the importance of the observation noise matrix.

5. Conclusions and further considerations

We used the LSC approach in order to model the remaining residuals (after
an initial similarity or a polynomial transformation) in the case of an old
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and problematic datum in Greece. We found that after the similarity and
the polynomial transformation, significant biases and discrepancies exist.
We applied the LSC approach in order to model the remaining residuals.
The use of LSC with observation noise improves significantly the connection
quality between the “old Bessel” geodetic datum and the HGRS1987. This
is reflected in the standard deviations of the inconsistencies: From 26.8 cm
(before the LSC application) then reduced to 10.3 cm (after). The extreme
discrepancies also present significant refinement: from 68.7 cm (before the
LSC application) to 23 cm (after), in an absolute sense.

We recommend that the suggested methodology could be applied in each
map sheet of the “old Bessel”. For an effective implementation of the ap-
proach, all map sheets of the “old Bessel” should be digitized and a series of
well distributed points on the map should be remeasured by RTK, with re-
spect to the HGRS1987. The discussed methodology demands an extensive
cooperation between the state agencies and professionals in order to stand
as an alternative to the severe problem of connecting the rural areas to the
official HGRS1987.
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