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Abstract: The elements of the Eötvös matrix, usually determined by torsion balance

measurements, are useful in many geodetic applications. We present a method for the

computation of the elements of the normal Eötvös matrix at a point on the Earth’s physical

surface, resulting in an improvement in the determination of the deflection of the vertical

at intermediate points of a network. In the process, we also present analytical expressions

for the computation of the components of the deflection of the vertical. From those

expressions and using also a numerical example, we show that the proposed refinement is

not completely negligible.
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1. Introduction

The Eötvös matrix is the second order derivative of the Earth’s gravity
potential at a point P . The Earth’s gravity potential is expressed in a
local Cartesian system (x, y, z). This system is centred at point P (point
of measurement), the z-axis is perpendicular to the equipotential surface
passing through point P pointing outwards, the x-axis is tangent to the
equipotential surface passing through point P pointing North and the y-
axis is tangent to the aforementioned equipotential surface pointing East.
Using the letter “W” for the Earth’s gravity potential, then its second order
derivative at point P expressed in this local Cartesian system is equal to:

E(P ) =

⎡
⎢⎣
Wxx Wxy Wxz

Wyx Wyy Wyz

Wzx Wzy Wzz

⎤
⎥⎦
P

. (1.1)
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The elements of the Eötvös matrix (except Wzz) are determined by tor-
sion balance measurements at point P . The Eötvös matrix is significant
because, for example, it plays an important role for the “Geodetic Singular-
ity Problem”: if the determinant of the Eötvös matrix at point P is equal to
zero, then it is rank deficient and this classifies point P as a singular point.
This means that it is not possible to replace (pseudo)differentials of un-
holonomic coordinate systems, which are related to moving local astronom-
ical frames, with differentials of holonomic coordinate systems (Livieratos,
1976). Another application of the Eötvös matrix is the determination of the
deflection of the vertical at points on the Earth’s physical surface (Völgyesi,
1993, 1998). The elements of the Eötvös matrix which are involved areWxx,
Wxy and Wyy. A third application of the Eötvös matrix is the determina-
tion of the geoid undulation by an alternative solution for the astrogeodetic
levelling (Völgyesi, 2001). Finally, the determination of gravity anomaly is
possible (for gravimetric determination of the geoid) with the help of the
elements Wxz and Wyz.

In this work we will describe briefly the method for the determination
of the deflection of the vertical with torsion balance measurements. The
necessary equations of this method include the diagonal elements Wxx and
Wyy of the Eötvös matrix and also the diagonal elements Uxx and Uyy of
the normal Eötvös matrix at point P (the letter “U” is used for the normal
gravity potential generated by an equipotential ellipsoid of revolution – the
reference ellipsoid). Until now, the values of the elements Uxx, and Uyy have
been determined on the surface of a chosen ellipsoid of revolution. Here
we will present a method for their determination on the Earth’s physical
surface.

2. Determination of deflections of the vertical with torsion
balance measurements

There is a set of points P1, P2, P3, ..., Pn−2, Pn−1, Pn on the Earth’s physical
surface covering a relative small area (see Fig. 1). At points P1 and Pn the
deflection of the vertical is known. Torsion balance measurements have been
performed at all points. For the triangle P1P2P3 we have three equations
(Völgyesi, 1993):
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Fig. 1. Torsion balance and gravity measurements network.

Δξ21 sinα12 −Δη21 cosα12 =

=
S12

4g12

[
(Wyy − Uyy +Wxx − Uxx)

∣∣∣
P1

sin 2α12 +

+(Wyy − Uyy +Wxx − Uxx)
∣∣∣
P2

sin 2α12 +

+ (Wxy − Uxy)
∣∣∣
P1

cos 2α12 + (Wxy − Uxy)
∣∣∣
P2

cos 2α12

]
,

(2.1)

Δξ32 sinα23 −Δη32 cosα23 =

=
S23

4g23

[
(Wyy − Uyy +Wxx − Uxx)

∣∣∣
P2

sin 2α23 +

+(Wyy − Uyy +Wxx − Uxx)
∣∣∣
P3

sin 2α23 +

+(Wxy − Uxy)
∣∣∣
P2

cos 2α23 + (Wxy − Uxy)
∣∣∣
P3

cos 2α23

]
,

(2.2)

Δξ31 sinα13 −Δη31 cosα13 =

=
S13

4g13

[
(Wyy − Uyy +Wxx − Uxx)

∣∣∣
P1

sin 2α13 +

+(Wyy − Uyy +Wxx − Uxx)
∣∣∣
P3

sin 2α13 +

+(Wxy − Uxy)
∣∣∣
P1

cos 2α13 + (Wxy − Uxy)
∣∣∣
P3

cos 2α13

]
,

(2.3)

where

Δξ21 = ξ1 − ξ2 , (2.4)

Δη21 = η1 − η2 . (2.5)
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Similar relations hold for Δξ32, Δξ31, Δη32 and Δη31. Also, α12, α23 and
α13 are the azimuths of P1P2, P2P3 and P1P3, while S12, S23 and S13 are the
lengths of P1P2, P2P3 and P1P3 respectively, and gij is an average gravity
value between Pi and Pj . The local Cartesian system (x, y, z) is centred at
point P1. Additional relations for the triangle P1P2P3 are:

Δξ21 +Δξ32 +Δξ13 = 0 , (2.6)

Δη21 +Δη32 +Δη13 = 0 . (2.7)

For the triangle P1P2P3 we have six unknowns which are Δξ21, Δξ32,
Δξ13, Δη21, Δη32, and Δη13. Therefore for the n−2 triangles (see Fig. 1) we
have 4n−6 unknowns and 4n−7 equations. We need one more equation to
find the unknowns, and we can choose one from the following two equations:

n∑
i=2

Δξi−1,i = ξn − ξ1 , (2.8)

or

n∑
i=2

Δηi−1,i = ηn − η1 . (2.9)

3. Improving the elements of the Eötvös matrix

The second order partial derivatives of the normal potential Uxx and Uyy,
which are involved in the equations (2.1), (2.2), and (2.3) have approximate
values, i.e. they are determined on the surface of the chosen reference ellip-
soid of revolution and not on the Earth’s physical surface. The points
of interest P1, P2, P3, ..., Pn−2, Pn−1, Pn are projected on the ellipsoid along
the ellipsoidal normals passing through these points. Let the projection
points beQ1, Q2, ..., Qn and (xQi, yQi, zQi) the corresponding local Cartesian
systems which are defined on the aforementioned projection points. The
value of the components of the normal Eötvös matrix at points P1, P2, ..., Pn

is given by Toth et al. (2001):
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Uyy − Uxx ≡ UyQiyQi
− UxQixQi

=

= γ

(
1

N
− 1

M

)
= γ(k2 − k1) = 10.26 cos2 φ ,

(3.1)

in Eötvös units (1E = 10−9sec−2). The symbol “γ” stands for the normal
gravity on the ellipsoid while M and N are its principal radii of curvature.
For the above equation we made the assumption that:

Uyy − Uxx = UyQiyQi
− UxQixQi

. (3.1a)

In addition, the second assumption for equation (3.1) is:

Uxy ≡ UxQiyQi
= 0 . (3.1b)

As we mentioned before, (xQi, yQi, zQi) are the local Cartesian systems
at points Q1, Q2, ..., Qn. We define a second local Cartesian system at each
point on the Earth’s physical surface by the following relation:⎡
⎢⎣x1iy1i
z1i

⎤
⎥⎦ =

⎡
⎢⎣ 0

0
−hP1

⎤
⎥⎦+

⎡
⎢⎣1 0 0
0 cos δi sin δi
0 − sin δi cos δi

⎤
⎥⎦
⎡
⎢⎣xQi

yQi

zQi

⎤
⎥⎦ , i = 1, 2, ..., n , (3.2)

where (x1i, y1i, z1i), i = 1, 2, ..., n are the related local Cartesian systems at
points P1, P2, P3, ..., Pn−2, Pn−1, Pn and hPi is the geometric height of point
Pi (Fig. 2).

Q

·

iy

ix

Iz
P

iy

ix

iz

iö

Ih

Fig. 2. Coordinate systems at points Qi and Pi.
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From the above relation we also get the following inverse relation (since
the rotation matrix is orthogonal):⎡
⎢⎣xQi

yQi

zQi

⎤
⎥⎦ =

⎡
⎢⎣1 0 0
0 cos δi − sin δi
0 sin δi cos δi

⎤
⎥⎦
⎡
⎢⎣ x1i

y1i
z1i + hP1

⎤
⎥⎦ , i = 1, 2, ..., n . (3.3)

From (3.2) we have:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂xQi

∂x1i

∂xQi

∂y1i

∂xQi

∂z1i

∂yQi

∂x1i

∂yQi

∂y1i

∂yQi

∂z1i

∂zQi

∂x1i

∂zQi

∂y1i

∂zQi

∂z1i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣
1 0 0

0 cos δi − sin δi

0 sin δi cos δi

⎤
⎥⎥⎥⎦ , (3.4)

see Hofmann-Wellenhof and Moritz (2006). The angle δi reads:

δi = −hPi

f∗

R
sin 2φP , (3.5)

where f ∗ is the gravitational flattening. The assumption which is made for
the determination of the elements of the normal Eötvös matrix is:

Uxx(Pi) = UxQixQi
(3.6)

Uyy(Pi) = UyQiyQi
(3.6a)

We suggest the following refinement for the above elements of the normal
Eötvös matrix, see also (Manoussakis, 2013):

Ux1ix1i = UxQixQi
(3.6b)

Uy1iy1i = UyQiyQi
cos2 δi + UyQizQi

sin 2δi + UzQizQi
sin2 δi (3.7)

Ux1ix1i(Pi) = Uxx(Pi) = UxQixQi
(Qi) + UxQixQizQi

(Qi)hPi (3.8)

Uy1iy1i(Pi) = Uyy(Pi) = [UyQiyQi
(Qi) + UyQiyQizQi

(Qi)hPi ] cos
2 δi+

+ [UyQizQi
(Qi) + UyQizQizQi

(Qi)hPi ] sin 2δi+

+ [UzQizQi
(Qi) + UzQizQizQi

(Qi)hPi ] sin
2 δi

(3.9)
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where

UxQixQizQi
≡ ∂3U

∂xQi∂xQi∂zQi
= γk21 (3.10)

∂φ

∂yQi

=
1

∂

∂φ

(
1

k1

)(
b2

2a2
− 1

2

)
sin 2φ+

1

k1

(
b2

a2
cos2 φ+ sin2 φ

) (3.11)

UyQiyQizQi
≡ ∂3U

∂yQi∂yQi∂zQi
= γk22 −

∂2γ

∂y2Qi

(3.12)

∂γ

∂yQi

=
∂γ

∂φ

∂φ

∂yQi

=
∂γ

∂φ

1
∂yQi
∂φ

(3.13)

∂2γ

∂y2Qi

=

(
∂2γ

∂φ2
− ∂γ

∂yQi

∂2yQi

∂φ2

)
1(

∂2yQi

∂φ2

)2 (3.14)

From (3.10) and (3.12) we have that:

(
UxQixQixQi

− UyQiyQizQi

)
Qi

hPi =

[
γ(k22 − k21)−

∂2γ

∂y2Qi

]
hPi = ε1 − ε2 (3.15)

The first term is approximately equal to (see appendix):

ε1 = −γ(k21 − k22)hPi
∼= −2e′2γ cos2 φPi

b2

a4
hPi (3.16)

where e′ is the second numerical eccentricity of the reference ellipsoid, γ is
the normal gravity value on the surface of the ellipsoid (at point Qi), a and
b the semi axes of the ellipsoid and hPi the geometric height of point Pi on
the Earth’s physical surface. We have that:

(Wyy −Wxx)− (Uyy − Uxx) = (−gka2 + gka1)− (γk2 − γk1) (3.17)

where ka1 , k
a
2 are the values of principal curvatures of the actual equipoten-

tial surface of point Pi, and k1 and k2 are the principal curvatures of the
normal equipotential surface at point Qi, i.e. the curvatures of the reference
ellipsoid itself and γ is the normal gravity value at point Qi. Making the
necessary manipulations (see appendix) we arrive at the following relation:
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(Wyy −Wxx)− (Uyy − Uxx) =

= −
(
γ + δg(Pi) +

∂γ

∂h

∣∣∣∣
Qi

hPi

)(
2e′2

b2

a4
cos2 φPi

)
hPi−

−
(
δg(Pi) +

∂γ

∂h

∣∣∣∣
Qi

hPi

)
b

a2
e′2 cos2 φPi ,

(3.18)

where δg(Pi) is the gravity disturbance at point Pi. The above equation
gives an approximation of the difference Wyy −Wxx − (Uyy −Uxx) which is
used in equations (2.1), (2.2) and (2.3). Adding the correction terms, see
(3.15) and (3.16), the above relation becomes:

(Wyy −Wxx)− (Uyy − Uxx) =

= −
(
2γ + δg(Pi) +

∂γ

∂h

∣∣∣∣
Qi

hPi

)(
2e′2

b2

a4
cos2 φPi

)
hPi−

−
(
δg(Pi) +

∂γ

∂h

∣∣∣∣
Qi

hPi

)
b

a2
e′2 cos2 φPi −

∂2γ

∂y2

∣∣∣∣∣
Qi

hPi .

(3.19)

4. Analytical expressions for the deflections of the vertical

For the sake of simplicity, we shall derive analytical expressions for the
computation of the deflections of the vertical in a small network of three
points only. Let us assume also that the differences Δξ12 and Δη12 are
known, so we shall present expressions for Δξ31, Δξ32, Δη31 and Δη32 in
two cases: at first using only the classical part of the elements of the normal
Eötvös matrix and then including the suggested refinement.

Case I:

The linear system for the determination of the four unknowns Δξ31, Δξ32,
Δη31 and Δη32 is the following:

Δξ31 sinα13 −Δη31 cosα13 =

=
S13

4g13

[
(Wyy −Wxx − Uyy + Uxx)|P1

sin 2α13 +

+(Wyy −Wxx − Uyy + Uxx)|P3
sin 2α13 +

+(Wxy − Uxy)|P1
cos 2α13 + (Wxy − Uxy)|P3

cos 2α13

]
,

(4.1)
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Δξ32 sinα23 −Δη32 cosα23 =

=
S23

4g23

[
(Wyy −Wxx − Uyy + Uxx)|P2

sin 2α23 +

+(Wyy −Wxx − Uyy + Uxx)|P3
sin 2α23 +

+(Wxy − Uxy)|P2
cos 2α23 + (Wxy − Uxy)|P3

cos 2α23

]
,

(4.2)

Δξ31 +Δξ32 = −Δξm21 , (4.3)

Δη31 +Δη32 = −Δηm21 , (4.4)

where the letter “m” stands for the word “measured”. The determinant of
the above system is equal to:

D =

∣∣∣∣∣∣∣∣∣∣∣∣

sin a13 0 − cos a13 0

0 sin a23 0 − cos a23

1 1 0 0

0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= sin(a23 − a13) . (4.5)

Let

−
(
γ(Q1) + δg(P1) +

∂γ

∂h

∣∣∣∣
Q1

hP1

)(
2e′2

b2

a4
cos2 φP1

)
hP1−

−
(
δg(P1) +

∂γ

∂h

∣∣∣∣
Q1

hP1

)
b

a2
e′2 cos2 φP1 −

∂2γ

∂y2

∣∣∣∣∣
Q1

hP1 =

= −γ(Q1)c11 + c12 ,

(4.6)

−
(
γ(Q2) + δg(P2) +

∂γ

∂h

∣∣∣∣
Q2

hP2

)(
2e′2

b2

a4
cos2 φP2

)
hP2−

−
(
δg(P2) +

∂γ

∂h

∣∣∣∣
Q2

hP2

)
b

a2
e′2 cos2 φP2 −

∂2γ

∂y2

∣∣∣∣∣
Q2

hP2 =

= −γ(Q2)c21 + c22 ,

(4.7)
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−
(
γ(Q3) + δg(P3) +

∂γ

∂h

∣∣∣∣
Q3

hP3

)(
2e′2

b2

a4
cos2 φP3

)
hP3−

−
(
δg(P3) +

∂γ

∂h

∣∣∣∣
Q3

hP3

)
b

a2
e′2 cos2 φP3 −

∂2γ

∂y2

∣∣∣∣∣
Q3

hP3 =

= −γ(Q3)c31 + c32 ,

(4.8)

where

c11 =

(
2e′2

b2

a4
cos2 φP1

)
hP1 , (4.8a)

c12 = −
(
δg(P1) +

∂γ

∂h

∣∣∣∣
Q1

hP1

)(
2e′2

b2

a4
cos2 φP1

)
hP1−

−
(
δg(P1) +

∂γ

∂h

∣∣∣∣
Q1

hP1

)
b

a2
e′2 cos2 φP1 − ∂2γ

∂y2

∣∣∣∣∣
Q1

hP1 ,

(4.8b)

c21 =

(
2e′2

b2

a4
cos2 φP2

)
hP2 , (4.8c)

c22 = −
(
δg(P2) +

∂γ

∂h

∣∣∣∣
Q2

hP2

)(
2e′2

b2

a4
cos2 φP2

)
hP2−

−
(
δg(P2) +

∂γ

∂h

∣∣∣∣
Q2

hP2

)
b

a2
e′2 cos2 φP2 −

∂2γ

∂y2

∣∣∣∣∣
Q2

hP2 ,

(4.8d)

c31 =

(
2e′2

b2

a4
cos2 φP3

)
hP3 , (4.8e)

c32 = −
(
δg(P3) +

∂γ

∂h

∣∣∣∣
Q3

hP3

)(
2e′2

b2

a4
cos2 φP3

)
hP3−

−
(
δg(P3) +

∂γ

∂h

∣∣∣∣
Q3

hP3

)
b

a2
e′2 cos2 φP3 −

∂2γ

∂y2

∣∣∣∣∣
Q3

hP3 .

(4.8f)

The solution for Δξ31 is found as follows:
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DΔξ31 =

∣∣∣∣∣∣∣∣∣∣∣∣

M11 0 − cos a13 0

M21 sin a23 0 − cos a23

−Δξm21 1 0 0

−Δηm21 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.9)

where M11 and M21 are auxiliary terms:

M11 =
{
[−(γ(Q1)c11 + γ(Q3)c31) + c12 + c32] sin 2a13 +

+ [Wxy(P1) +Wxy(P3)] cos 2a13
} S13

4g13
,

M21 =
{
[−(γ(Q2)c21 + γ(Q3)c31) + c22 + c32] sin 2a23 +

+ [Wxy(P2) +Wxy(P3)] cos 2a23
} S23

4g23
,

and

Δξ31 =
DΔξ31

D
. (4.10)

We split the solution in two parts i.e.

DΔξ31 =

∣∣∣∣∣∣∣∣∣∣∣∣

M ′
11 0 − cos a13 0

M ′
21 sin a23 0 − cos a23

0 1 0 0

0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣∣∣∣∣∣

M ′′
11 0 − cos a13 0

M ′′
21 sin a23 0 − cos a23

−Δξm21 1 0 0

−Δηm21 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= D1 +Dc1

(4.11)

where M ′
11, M

′
21, M

′′
11 and M ′′

21 are auxiliary terms as well:

M ′
11 =−

{
γ(Q1)c11 + γ(Q3)c31

} S13

4g13
sin 2a13 ,
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M ′
21 =−

{
γ(Q2)c21 + γ(Q3)c31

} S23

4g23
sin 2a23 ,

M ′′
11 =

{
[c12 + c32] sin 2a13 + [Wxy(P1) +Wxy(P3)] cos 2a13

} S13

4g13
,

M ′′
21 =

{
[c22 + c32] sin 2a23 + [Wxy(P2) +Wxy(P3)] cos 2a23

} S23

4g23
.

The rationale for the splitting is that, in both cases, the second determinant
will remain unchanged and only the first determinant will change. Hence:

Δξ31 =
1

sin(a23 − a13)
(D1 +Dc1) . (4.12)

Similar relations hold for the rest of the unknowns i.e.:

Δξ32 =
1

sin(a23 − a13)
(D2 +Dc2) , (4.13)

Δη31 =
1

sin(a23 − a13)
(D3 +Dc3) , (4.14)

Δη32 =
1

sin(a23 − a13)
(D4 +Dc4) . (4.15)

Case II:

We now apply the suggested refinement to the elements of the normal Eötvös
matrix. The above solution becomes:

Dnew
Δξ31 = 2

∣∣∣∣∣∣∣∣∣∣∣∣

M ′
11 0 − cos a13 0

M ′
21 sin a23 0 − cos a23

0 1 0 0

0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣∣∣∣∣∣

M ′′
11 0 − cos a13 0

M ′′
21 sin a23 0 − cos a23

−Δξm21 1 0 0

−Δηm21 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
,

(4.16)

104



Contributions to Geophysics and Geodesy Vol. 45/2, 2015 (93–109)

and the new solution is:

Δξnew31 = Δξ31 +
D1

sin(a23 − a13)
(4.17)

and

Δξnew32 = Δξ32 +
D2

sin(a23 − a13)
(4.18)

Δηnew31 = Δη31 +
D3

sin(a23 − a13)
(4.19)

Δηnew32 = Δη32 +
D4

sin(a23 − a13)
(4.20)

Since the second terms in the right hand side of (4.17) to (4.20), which
also appear in (4.12) to (4.15), are not considered negligible in the classical
solution, then they should not be considered negligible in the new solution.

5. Impact on the improvement of the deflections of the ver-
tical – example

We chose three points in the broad Athens area, for which we have data from
a gravity net established by the National Technical University of Athens.
Point P1 is located at the National Observatory of Athens, point P2 at the
Dept. of Topography of the National Technical University and point P3 at
the Dionysos Satellite Station. The relevant data are in Table 1:

Table 1. Coordinates and other data of the chosen points

Point ϕ [◦] λ [◦] h [m] g [mgal] ξ [′′] η [′′]

P1 37.973210444 23.718125278 190.20 979950.543 −3.622 −10.093

P2 37.975138889 23.780219444 244.00 979940.832 −2.826 −8.490

P3 38.078595500 23.932465861 510.40 979778.625 −2.262 −0.025

The values (ξ, η) of the deflection of the vertical were derived from the
EGM2008 gravitational model (Hirt, 2010) and were properly adjusted to
the Earth’s physical surface.

Other computed elements are as follows (Table 2):
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Table 2. Distances, azimuths and deflection differences

S12 = 5460.01 m α12 = 87.73362◦ Δξ12 = 0.796′′ Δη12 = 1.603′′

S23 = 17622.45 m α23 = 49.28850◦ Δξ23 = 0.564′′ Δη23 = 8.465′′

S13 = 22158.53 m α13 = 58.07052◦ Δξ13 = 1.360′′ Δη13 = 10.068′′

The known parameters are the values of Δξ12 and Δη12. Since the values
of Wxy at the three points are not known, we can only compute the fractions
of Δξ and Δη from the first part of (4.12)–(4.15) (determinants D1, D2, D3,
and D4) and compare them with the whole values (known from the model).
In Table 3, which summarizes the results, we present the computed fractions
of Δξ and Δη from determinants D1, D2, D3, and D4, as explained above
(denoted “D value”).

Table 3. Results of the numerical example

Model value [′′] Case I – D value [′′] Case II – D value [′′]

Δξ13 1.360 −0.0011 −0.0022

Δξ23 0.564 0.0011 0.0022

Δη13 10.068 −0.0015 −0.0030

Δη23 8.465 0.0015 0.0030

From the results presented in Table 3 we see that the proposed refinement
of the normal Eötvös matrix modifies the values of the deflections of the
vertical by a few milliarcseconds.

6. Conclusions

In this paper we briefly presented the determination of the deflection of
the vertical at points on the Earth’s physical surface with the aid of tor-
sion balance measurements. We used algebraic equations which include,
amongst others, the second order partial derivatives of the actual gravity
potential and the second order partial derivatives of the normal potential
(the diagonal independent elements of the normal Eötvös matrix). The ac-
tual values are taken at points of interest on the Earth’s physical surface,
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while the normal values are taken on the surface of the reference ellipsoid.
We then outlined the method for the determination of the second order par-
tial derivatives of the normal potential on the Earth’s surface. In the last
sections we produced analytical expressions for the computations of the el-
ements of the deflection of the vertical. Finally, using a numerical example,
we showed that the suggested refinement is small but not negligible.
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Appendix

Equation (3.17) can be further analysed to:

(Wyy −Wxx)− (Uyy − Uxx) = (−gka2 + gka1 )− (γk2 − γk1) =

= (γα + δg)(ka1 − ka2)− γ(k1 − k2) ,
(A.1)
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where γα is the normal gravity value at point Pi and δg is the gravity
disturbance at the same point. In addition:

(γα + δg)(ka1 − ka2)− γ(k1 − k2) =

=

(
γ +

∂γ

∂z

∣∣∣∣
Qi

hPi

)
(ka1 − ka2) + δg(ka1 − ka2)− γ(k1 − k2) =

= γ(ka1 − ka2)− γ(k1 − k2) +
∂γ

∂z

∣∣∣∣
Qi

hPi(k
a
1 − ka2) + δg(ka1 − ka2) .

(A.2)

The right hand side of equation (A.2) approximately becomes:

γ

(
1

R1 + hPi

− 1

R2 + hPi

)
− γ

(
1

R1
− 1

R2

)
+

+

(
∂γ

∂z

∣∣∣∣
Qi

hPi + δg

)(
1

R1 + hPi

− 1

R2 + hPi

)
,

(A.3)

where R1 and R2 are the values of the principal radii of curvature of the
ellipsoid at point Qi. But:

1

R1 + hPi

− 1

R2 + hPi

=
1

R1

(
1 +

hPi

R1

) − 1

R2

(
1 +

hPi

R2

) ∼=

∼= 1

R1

(
1− hPi

R1

)
− 1

R2

(
1− hPi

R2

)
.

(A.4)

Therefore, with the help of relation (A.4), relation (A.3) becomes:

γ

[
1

R1

(
1− hPi

R1

)
− 1

R2

(
1− hPi

R2

)]
− γ

(
1

R1
− 1

R2

)
+

+

(
∂γ

∂z

∣∣∣∣
Qi

hPi + δg

)[
1

R1

(
1− hPi

R1

)
− 1

R2

(
1− hPi

R2

)] (A.5)

After minor manipulations we have that:

−γhPi

(
1

R2
1

− 1

R2
2

)
+

(
∂γ

∂z

∣∣∣∣
Qi

hPi + δg

)[
1

R1
− 1

R2
+

+hPi

(
− 1

R2
1

+
1

R2
2

)]
.

(A.6)
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For the principal curvatures it holds that (Hofmann-Wellenhof and Moritz,
2006):

1

R1
− 1

R2

∼= − b

a2
e′2 cos2 φ (A.7)

1

R2
1

− 1

R2
2

∼= 2b2

a4
e′2 cos2 φ (A.8)

Relation (A.6) becomes:

−2γhPi

b2

a4
e′2 cos2 φ −

(
∂γ

∂z

∣∣∣∣
Qi

hPi + δg(Pi)

)[
b

a2
e′2 cos2 φ +

+hPi

2b2

a4
e′2 cos2 φ .

(A.9)

Rearranging the terms of the above relation we arrive at the following rela-
tion:

(Wyy −Wxx)− (Uyy − Uxx) =

= −
(
γ +

∂γ

∂z

∣∣∣∣
Qi

hPi + δg(Pi)

)
2b2

a4
hPi e

′2 cos2 φ −

−
(
∂γ

∂z

∣∣∣∣
Qi

hPi + δg(Pi)

)
b

a2
e′2 cos2 φ

(A.10)

From relation (A.8) we have:

ε1 = −γ(k21 − k22)hPi = γ

(
1

R2
2

− 1

R2
1

)
hPi

∼= −2e′2γ cos2 φPi

b2

a4
hPi . (A.11)

From (3.15), (A.10) and (A.11) (substituting the letter “z” with the letter
“h” in the vertical gradient of normal gravity) we finally conclude that the
improved term is equal to:

(Wyy −Wxx)− (Uyy − Uxx) =

= −
(
2γ + δg(Pi) +

∂γ

∂h

∣∣∣∣
Qi

hPi

)(
2e′2

b2

a4
cos2 φPi

)
hPi−

−
(
δg(Pi) +

∂γ

∂h

∣∣∣∣
Qi

hPi

)
b

a2
e′2 cos2 φPi −

∂2γ

∂y2

∣∣∣∣∣
Qi

hPi .

(A.12)
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