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Abstract: A neutral direction of a gravity field is a direction along which the components

of the gravity vector remain locally unchanged. A neutral point is a point at which

there exists a neutral direction. This research will focus on the neutral directions for the

normal gravity vector. The necessary condition for the existence of neutral directions at

an arbitrary point P above the ellipsoid is that the determinant of the Eötvös matrix

must be equal to zero. The slopes of these directions depend on the value of the principal

curvatures and the curvature of the plumbline. In all cases the neutral directions lie on

the meridian plane at point P . An interesting case is when the vertical gradient of normal

gravity is equal to zero. Finally in the last two paragraphs we show that neutral points

are not isolated in the three dimensional space and give a numerical example for the case

of a spherical gravity field.
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1. Introduction

Many interesting problems in physical sciences are related to 1) the in-
vestigation for invariant quantities of geometrical objects (for example the
Gauss curvature) or 2) the investigation for quantities which remain un-
changed on specific geometric objects. In the latter case some examples
are a) equipotential surfaces (constant potential), b) isozenithal lines (grav-
ity vector parallel to itself), and c) isocurvature lines (constant plumbline
curvature). For isozenithal lines (related to Molodensky’s problem) see for
example Moritz (1980) and Sanso (1978). Moritz (op. cit.) describes how
isozenithal lines involve with the linearization of the boundary condition
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of Molodensky’s problem and gives their shape schematically for the case
of the normal gravity field. Sanso (op. cit.) also describes the shape of
isozenithal lines in a gravity field generated by a rotated sphere. An addi-
tional interesting work on isozenithal lines can be found in Marussi (1985)
who defines two quantities (the curvature and torsion of the Earth’s gravity
field) and describes the connection between them and isozenithal lines. This
connection results in an equation for the bearing of an isozenithal line. For
isocurvature lines see Manoussakis and Delikaraoglou (2011).

Another wide area in mathematics, which has affected geodesy, is the
study of singularities. Significant work has been made on the existence
of singularities in the Earth’s gravity field as well as the Earth’s normal
gravity field. A famous problem in theoretical geodesy which involves alge-
braic singularities is the “geodetic singularity problem” (Grafarend, 1971;
Livieratos, 1976). The geodetic singularity problem is related to the connec-
tion between the differentials of the astronomical coordinates (Φ,Λ,W ) at
a point P on the Earth’s physical surface – where W stands for the Earth’s
gravity potential, Φ for astronomical latitude and Λ for the astronomical
longitude – and the differentials of a local Cartesian system (x, y, z) such
that the z–axis is vertical to the actual equipotential surface at point P ,
the x–axis points East and the y–axis points North. Both differential tri-
ads are related to a three dimensional matrix whose determinant depends
on the magnitude of the actual gravity vector, the value of secΦ, and the
value of the Gauss curvature of the actual equipotential surface at point P .
If this transformation matrix is rank deficient, i.e. its determinant is equal
to zero, then it cannot be inverted. This deficiency results in the geodetic
singularity problem.

Another example is the altimetry-gravimetry geodetic boundary value
problem. The solvability of the linear fixed altimetry-gravimetry geodetic
boundary value problem depends on the absolute value of the difference be-
tween the Gauss curvature of the ellipsoid of revolution and the Gauss cur-
vature of the boundary surface which represents the Earth’s surface (Panou
et al., 2013). If this difference attains a specific value then it causes an
analytical singularity which prevents the solvability of the problem. The
Earth’s normal gravity field (Somigliana, 1929) is extensively studied and
used in Geodesy, so the singularity problem is also studied in the case for
the Earth’s normal gravity field (we will write only “normal gravity field” in

42



Contributions to Geophysics and Geodesy Vol. 44/1, 2014 (41–60)

what follows). The symmetry properties of the normal gravity field make it
useful in the study of various problems regarding the Earth’s actual gravity
field. Yet we have to mention that the normal gravity field is also very
interesting by itself.

This work refers to the latter two cases. The quantities, which we are
interested in, are the components of the normal gravity vector and under
which conditions these remain unchanged.

2. Configuration of the problem

Let U be the normal potential of the gravity field generated by the level
(normal) ellipsoid and P be an arbitrary point above the ellipsoid. Let UP
be the value of the normal potential at this point. Suppose that (X,Y,Z) is
a Cartesian rotating system such that the Z–axis is along the axis of rotation
of the ellipsoid, the X–axis is the intersection of the zero meridian plane and
the equator’s plane and the Y -axis makes the system right-handed. On the
normal equipotential surface passing through point P we define a second
Cartesian system (x, y, z) such that its origin is at point P , the z–axis is
normal to the equipotential surface, the y–axis points north and the x–axis
points east. The vector equation of the normal equipotential surface for a
region around point P has the form

s̄(x, y) = (x, y, z(x, y)) , (1)

where the value of the normal potential at P is not involved in the pa-
rameterization of the vector equation. The normal gravity vector (which
represents the Newtonian and the centrifugal force) is vertical to the equipo-
tential surface at P and its coordinates vary with the geodetic latitude and
the geometrical height. But there are some cases in which the components
of the gravity vector remain unchanged even if these two variables (lati-
tude, height) are being changed. To be more specific, if some necessary
conditions hold at point P , there is a direction on the meridian plane of
that point along which the components of the normal gravity vector remain
locally unchanged.

Let the Eötvös matrix at point P be
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EP =

⎡
⎢⎢⎣
Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

⎤
⎥⎥⎦
P

=

⎡
⎢⎢⎣
−γk1 0 0

0 −γk2 −γk

0 −γk 2ω2 + γk1 + γk2

⎤
⎥⎥⎦
P

, (2)

where the symbols ω, k1, k2 and k denote the angular velocity of the ellip-
soid, the principal curvatures along the west-east direction, the north-south
direction and the curvature of the plumbline respectively. If Q is an arbi-
trary point near point P and

γ̄P = (Ux, Uy, Uz)P , (3)

γ̄Q = (Ux, Uy, Uz)Q , (4)

δx̄ = (δx, δy, δz) = (xQ, yQ, zQ) , (5)

then⎡
⎢⎢⎣
Ux

Uy

Uz

⎤
⎥⎥⎦
Q

=

⎡
⎢⎢⎣
Ux

Uy

Uz

⎤
⎥⎥⎦
P

+

⎡
⎢⎢⎣
−γk1 0 0

0 −γk2 −γk

0 −γk 2ω2 + γk1 + γk2

⎤
⎥⎥⎦
P

⎡
⎢⎢⎣
δx

δy

δz

⎤
⎥⎥⎦ . (6)

Since we are interested in the case that the components of the normal gravity
vector remain unchanged at points P and Q it holds that (see also Eq. 5)⎡
⎢⎢⎣
−γk1 0 0

0 −γk2 −γk

0 −γk 2ω2 + γk1 + γk2

⎤
⎥⎥⎦
P

⎡
⎢⎢⎣
xQ

yQ

zQ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0

0

0

⎤
⎥⎥⎦ . (7)

The above system is a 3 × 3 algebraic system. The necessary condition for
non-zero solutions is that its determinant is zero. The non-zero solutions are
straight lines passing through point P which represent the neutral directions
of the normal gravity vector. Hence the necessary condition in order to
investigate the configuration of the neutral directions of the normal gravity
vector is that the determinant of the Eötvös matrix at point P must be
equal to zero. The detailed study is presented in the next section.

3. Existence of neutral points

The normal potential U is given by the formula (Heiskanen and Moritz,
1967)
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U(u, β) =
GM

E
tan−1 E

u
+

1

2
ω2a2

q

q0
(sin2 β − 1

3
) +

1

2
ω2(u2 + E2) cos2 β , (8)

where (u, β, λ) are the ellipsoidal coordinates which are given by the rela-
tions

X =
√
u2 + E2 cos β cos λ ,

Y =
√
u2 + E2 cos β sinλ , (8a)

Z = u sin β ,

E2 = a2 − b2 . (8b)

The letters “a” and “b” stand for the semimajor and semiminor axis of the
ellipsoid of revolution respectively, G stands for the gravitational constant
and M is the Earth’s mass. In addition,

q = q(u) =
1

2

[(
1 + 3

u2

E2

)
arctan

(
E

u

)
− 3

u

E

]
, (8c)

q0 = q(b) . (8d)

The equipotential surfaces of the normal gravity field are closed convex sur-
faces. The normal potential is the sum of the Newtonian potential V and
the centrifugal potential Φ. As we move further and further from the ellip-
soid, the Newtonian potential is getting weaker and the centrifugal potential
is getting stronger. Since the centrifugal force becomes stronger and it has
the opposite direction from the Newtonian force eventually when we are far
away from the ellipsoid we can find a point P such that

γP = |gradUP | = 0 . (9)

The above relation means that at point P holds that

|gradVP | = |gradΦP | . (10)

At point P the magnitude of the normal gravity vector is equal to zero (we
skip the letter P ) i.e.

γ = 0 . (11)
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The above relation tells us that point P is an equilibrium point of the normal
gravity field. Equilibrium points are neutral points of the normal gravity
field. This can be seen easily since the determinant of the normal Eötvös
matrix is equal to

−γk1
[
−γk2

(
2ω2 + γk1 + γk2

)
− γ2k2

]
= 0 . (12)

But generally it is not possible to investigate what kind of a neutral point
may be, because the investigation depends on the kind of coordinate system
we use. This will be clear in the following paragraphs. In addition, we will
show that it is possible to find infinite many neutral points and we will show
that they are not isolated in the three dimensional space. Supposing that
a point P far away from the ellipsoid of revolution with non-zero normal
gravity and such that

|gradVP | < |gradΦP | , (13)

i.e. point P is further from the ellipsoid of revolution than an equilibrium
point. Let UP be the value of the normal potential of the equipotential
surface passing through this point. Since the normal gravity vector has
changed direction the Eötvös matrix at point P is now equal to

EP =

⎡
⎢⎢⎣
Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

⎤
⎥⎥⎦
P

=

⎡
⎢⎢⎣
γk1 0 0

0 γk2 γk

0 γk 2ω2 − γk1 − γk2

⎤
⎥⎥⎦
P

. (14)

The principal curvature along west-east direction at point P is also non-zero
hence the determinant of the Eötvös matrix at point P becomes[
(k1 + k2) k2 + k2

]
γ2 − 2ω2k2γ = 0 . (15)

We will show that there exists a non-zero root for the above equation. Let
ε be the vertical line to the ellipsoid passing through point P . Let Q be the
intersection point of the vertical line ε and the ellipsoid. Supposing that
(x1, y1, h) is a local Cartesian system whose origin is at point Q, the h–axis
is normal to the ellipsoid of revolution, the y1–axis points north and the
x1–axis points east. The point P is chosen to be very close to the equatorial
plane therefore the local Cartesian systems at point P and Q are almost
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parallel.
The Fig. 1 shows the two aforementioned local Cartesian systems at those

points. The dotted line is the vertical line to the ellipsoid passing through
point P . The determinant of the Eötvös matrix at point P can be also
written as (we omit the letter “P”)

Uxx

(
UyyUhh − U2

yh

)
= 0 . (15a)

Since the x second partial derivative of normal potential is non-zero, we
expand the rest of the terms in Taylor series, using as a pole the point Q
and up tp an odd integer m.⎛
⎝Uyy(Q) +

m∑
n=1

1

n!

∂nUyy

∂hn

∣∣∣∣
Q

hn

⎞
⎠

⎛
⎝Uhh(Q) +

m∑
n=1

1

n!

∂nUhh

∂hn

∣∣∣∣
Q

hn

⎞
⎠−

(16)

−
⎛
⎝Uyh(Q) +

m∑
n=1

1

n!

∂nUyh

∂hn

∣∣∣∣
Q

hn

⎞
⎠
2

= 0 .

After some manipulations, the above equation becomes an odd-degree alge-
braic equation of the form

Fig. 1. Local Cartesian systems at points P and Q.
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l∑
n=1

anh
n + a0 = 0 , (17)

where the coefficients a0 and a1, a2,...,al are real numbers and l is an odd
integer. The above equation has at least one real root which is the geometric
height of the point P . Therefore point P is a neutral point. In the next
section we will classify the neutral points according to the configuration of
neutral directions and with the help of Bruns equation.

4. Configuration of neutral directions

Suppose that a point P is a neutral point above the equatorial plane and
not an equilibrium point. As we mentioned in the previous paragraph, the
determinant of the Eötvös matrix at point P is equal to zero. The Eötvös
matrix is equal to

EP =

⎡
⎢⎢⎣
γk1 0 0

0 γk2 γk

0 γk 2ω2 − γk1 − γk2

⎤
⎥⎥⎦
P

. (18)

The equation which can be used to determine the slope of the neutral di-
rection on the meridian plane of point P is

k2y + kz = 0 . (19)

This can be done because the determinant of the normal Eötvös matrix is
zero, therefore the second and third rows are linearly dependent. Therefore
a vector equation of the neutral direction on the meridian plane is

εn(y) = (0, y, z(y)) =

(
0, y,−k2

k
y

)
. (20)

The Bruns equation at point P (Heiskanen and Moritz, 1967) is equal to

∂γ

∂z

∣∣∣∣
P
= −2ω2 + 2γP JP , (21)
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where JP is the mean curvature of the equipotential surface at this point.
The Bruns equation is written with a changed sign because the neutral point
P is further from the ellipsoid of revolution than the equilibrium point of
the vertical line ε therefore the normal gravity vector has changed direction.
At the neutral point P we have∣∣∣∣
(
∂γ

∂z

∣∣∣∣
P

)∣∣∣∣ < 2ω2 . (22)

As we mentioned before, along a neutral direction the coordinates of the
normal gravity vector locally do not change. In this case point P is called
the neutral point of the first kind (see Fig. 2).

Fig. 2. Neutral direction at point P (γp not zero).

The second case is when point P is a neutral point on the equatorial
plane. In this case the Eötvös matrix becomes

EP =

⎡
⎢⎢⎣
γk1 0 0

0 γk2 0

0 0 2ω2 − γk1 − γk2

⎤
⎥⎥⎦
P

. (23)

After the equilibrium point of the equatorial plane the absolute value of
the vertical gradient becomes smaller and smaller as we move further and
further from the ellipsoid. Hence at point P on the equatorial plane it holds
that
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∂γ

∂z

∣∣∣∣
P
= 0 (24)

or

2ω2 − 2γPJP = 0 , (25)

i.e. the determinant of the normal Eötvös matrix is equal to zero. A vector
equation for the neutral direction at point P is

εn(z) = (0, 0, z) . (26)

In this case the point P is a neutral point of the second kind (see Fig. 3).

Fig. 3. Neutral direction at a point P on the equatorial plane (vertical gradient of normal
gravity zero).

Last but not least is the case that point P is an equilibrium point. In this
case the normal Eötvös matrix cannot be determined since (Manoussakis,
2013) the principal curvatures become infinite because the local Cartesian
system which we use to study the neutral points is not the appropriate
system for the study of equilibrium points of the normal gravity field.

5. Configuration of neutral points in space

We will continue our investigation by showing that if we find a neutral point
then it is not isolated. Let P be a neutral point of the first kind which is
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very close to the equatorial plane. Let Q be a point on the meridian plane
of point P such that P and Q are very close. Since point P is a neutral
point, the determinant of the Eötvös matrix is equal to zero. Since both
points are very close the Eötvös matrix at point Q can be written as

EQ = EP +D1 y +D2 z , (27)

where D1 and D2 are the disturbing matrices of the Eötvös matrix at point
P . In a more analytical form relation (Eq. 27) is equal to

EQ =

⎡
⎢⎢⎣
Uxx Uxy Uxz

Uxy Uyy Uyz

Uxz Uyz Uzz

⎤
⎥⎥⎦
P

+

⎡
⎢⎢⎣
Uxxy Uxyy Uxzy

Uxyy Uyyy Uyyz

Uxzy Uyyz Uyzz

⎤
⎥⎥⎦
P

y +

⎡
⎢⎢⎣
Uxxz Uxyz Uxzz

Uxyz Uyyz Uyzz

Uxzz Uyzz Uzzz

⎤
⎥⎥⎦
P

z . (28)

Substituting the necessary partial derivatives and changing some necessary
signs (Manoussakis, 2013) the Eötvös matrix at point Q is equal to

EQ =

⎡
⎢⎢⎣
γk1 0 0

0 γk2 γk

0 γk 2ω2 − γk1 − γk2

⎤
⎥⎥⎦
P

+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ

(
kk1 +

∂k2
∂y

)
0 0

0 γ
∂k1
∂y

− 3γk2k −γk22 +
∂2γ

∂y2

0 −γk22 +
∂2γ

∂y2
−γk(k1 − 3k2)− 2γ

∂J

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
P

y +

+

⎡
⎢⎢⎢⎢⎢⎣

γk21 0 0

0 −γk22 +
∂2γ

∂y2
−γk(k1 − 3k2)− 2γ

∂J

∂y

0 −γk(k1 − 3k2)− 2γ
∂J

∂y
−γ(k21 − k22)−

∂2γ

∂y2

⎤
⎥⎥⎥⎥⎥⎦
P

z . (29)

The discriminant of the above matrix is

Det(EQ) =

[
−γk1 + γ

(
kk1 +

∂k2
∂y

)
y + γk21z

]
·

∣∣∣∣∣∣∣∣
D11 D12

D21 D22

∣∣∣∣∣∣∣∣
, (30)
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where

D11 = γk2 +

(
γ
∂k1
∂y

− 3γkk2

)
y −

(
γk22 −

∂2γ

∂y2

)
z ,

D12 = γk −
(
γk22 −

∂2γ

∂y2

)
y −

[
γk (k1 − 3k2) + 2γ

∂J

∂y

]
z ,

D21 = D12 ,

D22 = 2ω2 − γk1 − γk2 −
[
γk (k1 − 3k2) + 2γ

∂J

∂y

]
y −

−
[
∂2γ

∂y2
+ γ

(
k21 − k22

)]
z .

Expanding the above determinant we end up with the following second-order
algebraic equation{[

∂2γ

∂y2
+ γ

(
k21 − k22

)](
γk22 −

∂2γ

∂y2

)
−

[
γk (k1 − 3k2) + 2γ

∂J

∂y

]2}
z2 −

−
{(

γk22 −
∂2γ

∂y2

)2

+

(
γ
∂k1
∂y

− γkk2

)[
γk (k1 − 3k2) + 2γ

∂J

∂y

]}
y2 −

−
{(

γ
∂k1
∂y

− γkk2

)[
∂2γ

∂y2
+ γ

(
k21 − k22

)]
+

+

(
γk22 −

∂2γ

∂y2

)[
γk (k1 − 3k2) + 2γ

∂J

∂y

]}
yz +

(31)

+

{(
2ω2 − γk1 − γk2

)(
γ
∂k1
∂y

− γkk2

)
−

− γk2

[
γk (k1 − 3k2) + 2γ

∂J

∂y

]
+ 2γk

(
γk22 −

∂2γ

∂y2

)}
y +

+

{(
2ω2 − γk1 − γk2

)(
−γk22 +

∂2γ

∂y2

)
−

− γk2

[
∂2γ

∂y2
+ γ

(
k21 − k22

)]
+ 2γk

[
γk (k1 − 3k2) + 2γ

∂J

∂y

]}
z = 0 .

The above equation does not contain the constant term Det(EP ) because
it is equal to zero. The above equation represents a conic which passes
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through point P . For small values of the variable y the above equation is a
segment of the conic which is close to point P . Along this segment all points
are neutral points, i.e. points which have a neutral direction. Hence neutral
points of the first kind are not isolated in the three dimensional space.

The segment of the conic which is close to point P is called the local
neutral curve of the first kind. If we confine ourselves close enough to point
P then we can omit the second order terms of the above equation. In this
case we will form a linear equation which represents the tangent line of the
local neutral curve at point P . This equation is equal to{(

2ω2 − γk1 − γk2
)(

γ
∂k1
∂y

− γkk2

)
− γk2

[
γk (k1 − 3k2) + 2γ

∂J

∂y

]
+

+2γk

(
γk22 −

∂2γ

∂y2

)}
y +

{(
2ω2 − γk1 − γk2

)(
−γk22 +

∂2γ

∂y2

)
− (32)

− γk2

[
∂2γ

∂y2
− γ

(
k21 − k22

)]
− 2γk

[
γk (k1 − 3k2) + 2γ

∂J

∂y

]}
z = 0 .

Along the tangent line of point P we can choose another point, repeat
the procedure and pinpoint another neutral point. If we do this many times,
we will find a segmented line. This segmented line represents a curve on the
meridian plane which is called the neutral curve of the first kind.

Now let point P be a neutral point on the equatorial plane at which
the vertical gradient of normal gravity is equal to zero. Expanding the
determinant given by equation (30) and (31) we obtain{[

∂2γ

∂y2
+ γ

(
k21 − k22

)](
γk22 −

∂2γ

∂y2

)
−

(
2γ

∂J

∂y

)2
}
z2 −

−
{(

γk22 −
∂2γ

∂y2

)2

+ 2γ2
∂k1
∂y

∂J

∂y

}
y2 −

(33)

−
{
γ
∂k1
∂y

[
∂2γ

∂y2
+ γ

(
k21 − k22

)]
+

(
γk22 −

∂2γ

∂y2

)
2γ

∂J

∂y

}
yz −

− γk22γ
∂J

∂y
y − γk2

[
∂2γ

∂y2
+ γ

(
k21 − k22

)]
z = 0 .

The above equation represents the locus of neutral points locally around the
neutral point P above the equatorial plane at which the vertical gradient
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of normal gravity is equal to zero. If we confine ourselves in the vicinity of
point P the equation of the conic becomes(
2γ2k2

∂J

∂y

)
y + γk2

[
∂2γ

∂y2
+ γ

(
k21 − k22

)]
z = 0 . (34)

Finally we mention that it is not possible to study the equilibrium points
in this manner but we know that they are isolated from the aforementioned
neutral points.

In the Fig. 4 we show a section of the equatorial plane with a meridian
plane. We point an equilibrium point Pe, a first kind neutral point P1 and
a second kind neutral point P2. In addition, we draw the neutral curves
schematically at each point. If the neutral curves are rotated around the
ellipsoid then we will form the local shape of the neutral surfaces at these
points. If we isolate the part of the neutral curve at point P1 above the
equatorial plane and rotate it around the ellipsoid then we will form the
part of the neutral surface which is drawn in the next figure (see Fig. 5).

Fig. 4. Three possible cases of neutral curves.

Due to the symmetry of the normal gravity field the vector equation of
the neutral surface in the system (X,Y,Z) is equal to

s̄ (y, λ) =
(
X(y, z(y)) cos λ, Y (y, z(y)) sin λ, Z(y, z(y))

)
. (35)

An equilibrium point is a neutral point and it is isolated from the other
neutral points. Due to the complexity of the normal gravity field, we will
determine the equilibrium surface of a spherical gravity field in the next
section.

Figure 5 shows the local shape of a neutral surface of the first kind
generated from a neutral curve at the first kind neutral point P . At the
center of the above figure is the ellipsoid of revolution. In the case of a
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neutral point of a second kind the rotational neutral surface is a segment of
a cone.

We summarize the following results:

a) Neutral points of the first kind are not isolated in the three dimensional
space and they form a curve on the meridian plane which is the neutral
curve of the first kind. This curve is the generator curve of a rotational
surface which is called neutral surface of the first kind.

b) Neutral points of the second kind are also not isolated from each other
and they are isolated from the neutral points of the first kind. Neutral
points of the second kind form a rotational surface which is called a
neutral cone.

c) Equilibrium points are also neutral points but in the case of the normal
gravity field it is not possible to investigate them in the chosen coordinate
system. Equilibrium points are not isolated from each other but they are
isolated from the neutral points of the first and second kind.

Fig. 5. Neutral surface (hyperbolic neutral point).

6. Numerical example: Neutral points of a spherical gravity
field

In this section we determine the neutral points of a spherical gravity field.
Let S be a sphere which approximates the figure of the Earth with R =
6371 km, contains the mass of the Earth and rotates with the Earth’s an-
gular velocity. Supposing a Cartesian rotating system (X, Y , Z) such that
Z–axis is the Earth’s mean axis of rotation, the X–axis is the intersection
of the meridian plane of Greenwich and the equator’s plane and the Y –axis
makes the system right-handed. If P is a point on the equatorial plane of
the sphere then its total gravity potential is equal to
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US(P ) = VP +ΦP =
GM

rP
+

1

2
ω2r2P , (36)

where rP is the distance of point P from the center of the sphere S. Ac-
cording to section 2 equilibrium points are neutral points. On the equatorial
plane we form the following equation

GM

r2P
= ω2rP . (37)

The only unknown is the variable rP , therefore the distance of an equilibrium
point (which is also a neutral point) on the equatorial plane from the center
of the sphere is equal to

rP =
3

√
GM

ω2
= 42164.173 km . (38)

The equipotential surfaces of the spherical gravity field are spheres and at
each point the principal curvatures along west-east and north-south direc-
tion are equal. Supposing a local Cartesian system (x, y, z) whose origin is
a point P on the meridian, the z–axis is vertical to the equipotential surface
at point P , y–axis is tangent to the equipotential surface at point P and
points north, and x–axis is tangent to the equipotential surface and points
east. Since the plumblines of the spherical gravity field are straight lines
the Eötvös matrix at point P is equal to

EP =

⎡
⎢⎢⎣
γSkS 0 0

0 γSkS 0

0 0 2ω2 − 2γSkS

⎤
⎥⎥⎦
P

, (39)

where kS is the curvature of the spherical equipotential surface. The Eötvös
matrix is expressed in the local Cartesian system; therefore it cannot be
determined at an equilibrium point.

Now we investigate if there is a neutral point of the second kind on the
equatorial plane. In order to find it, we have to solve the following equation

2ω2 − 2γSkS = 0 (40)

and since ks = 1/r, then
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γS = ω2r . (41)

The above equation means that the Newtonian part of gravity must be equal
to zero. Of course this is not possible so that in the spherical gravity field
we do not have neutral points of the second kind.

Finally we are going to find the equation of the equilibrium surface.
Generally at a equilibrium point above the equatorial plane it holds that

GM

(X2 + Y 2 + Z2)
= ω2

√
X2 + Y 2 + Z2 cosφ , (42)

where φ is the spherical latitude. But

cosφ =

√
X2 + Y 2

√
X2 + Y 2 + Z2

. (43)

Making the necessary manipulations and confining ourselves to the first
quadrant we obtain

Z =

√
GM

ω2
√
X2 + Y 2

− (X2 + Y 2) . (44)

Making the transformation

re =
√
X2 + Y 2 , (45)

the parametric equation for the equilibrium curve in the first quadrant is

r̄S(re) =

(
re,

√
GM

ω2re
− r2e

)
, re ∈ (0, 42164.173 km) , (46)

and a vector equation for the part of the equilibrium surface for the first
quadrant is

s̄(re, λ) =

(
re cos λ, re sinλ,

√
GM

ω2re
− r2e

)
. (47)

Figure 6 is quite informative for the shape of the equilibrium surface in the
three dimensional space. It shows an intersection of the equilibrium surface
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Fig. 6. Section of the equilibrium surface with a meridian plane.

with a meridian plane. The equilibrium surface is a rotational surface and
its points are equilibrium points hence neutral points. The units used are
meters.

7. Conclusions

In this work, we have investigated the existence of neutral directions, i.e. the
existence of neutral points of the normal gravity vector and we described
their configuration in each case. The neutral points were classified into
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two categories. It is quite clear that the Eötvös matrix is very significant
since it contains valuable information for the local behavior of the normal
gravity vector. That is to say, that a neutral direction can be found only
when the determinant of the normal Eötvös matrix at a point P is equal to
zero. Interesting cases are when at a neutral point the vertical gradient of
normal gravity is equal to zero or it is an equilibrium point. We have also
showed that neutral points of the same kind were not isolated points in the
three dimensional space but different kind of neutral points were isolated.
In the case of equilibrium points we cannot investigate what kind of neutral
points are because of the choice of the coordinate system. Neutral points
lie on special plane curves called neutral curves. The rotational symmetry
of the normal gravity field results in the existence of special rotational sur-
faces which are called neutral surfaces. In the case of equilibrium points the
surface is called equilibrium surface. Due to the complexity of the normal
gravity field we presented a numerical example which involved the determi-
nation of neutral points of a spherical gravity field. The spherical gravity
field is generated by a sphere which contains the Earth’s mass and its radius
is the mean Earth radius then there exists only an equilibrium surface whose
points are simultaneously neutral points. Since the ellipsoid of revolution
has very small flattening we can make the assumption that the equilibrium
points of the normal gravity field on the equatorial plane will have a similar
distance from the center of the ellipsoid with those of the spherical gravity
field. Finally we form a vector equation of the equilibrium surface for the
case of a spherical gravity field and made an informative figure. Neutral di-
rections represent an additional interesting property of the normal gravity
field which promotes the significance of the Eötvös matrix.
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