Magnetometric problem for a 2-D body of polygonal cross-section buried in the unbounded magnetic halfspace

M. Hvoždara, A. Kaplíková Geophysical Institute of the Slovak Academy of Sciences¹

Abstract: We present the exact boundary integral formulae for calculation of the magnetic anomaly due to a two dimensional body whose permeability is μ_T and its cross-section is bounded by the closed general polygonal contour. This body is buried in a wide-spreaded halfspace (e.g. lava field) of magnetic permeability μ_1 . The upper half-space is non-magnetic, its permeability is μ_0 . The boundary integral technique for this problem requires the application of two-term logarithmic potential. Numerical calculations on the basis of derived formulae revealed that the surface anomaly ΔT reflects the "topography" mainly of the upper boundary of the perturbing body. The derived algorithm and numerical program enables the calculation of a lot of interesting models: magnetic intrusions, polygonal valleys, polygonal mine galleries, etc.

Key words: magnetometric models, the boundary integral technique, magnetometric profile measurements

¹ Dúbravská cesta 9, 845 28 Bratislava, Slovak Republic; e-mail: geofhvoz@savba.sk